Identifier
Values
{{1}} => [1] => [.,.] => ([],1) => 0
{{1,2}} => [2,1] => [[.,.],.] => ([(0,1)],2) => 2
{{1},{2}} => [1,2] => [.,[.,.]] => ([(0,1)],2) => 2
{{1},{2,3,5,6},{4}} => [1,3,5,4,6,2] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,3,5},{4,6}} => [1,3,5,6,2,4] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,3,5},{4},{6}} => [1,3,5,4,2,6] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,3},{4,5,6}} => [1,3,2,5,6,4] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,3},{4,5},{6}} => [1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1,6},{2,4},{3,5}} => [6,4,5,2,3,1] => [[[[.,.],[.,.]],[.,.]],.] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1,6},{2},{3,4,5}} => [6,2,4,5,3,1] => [[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1,6},{2},{3,4},{5}} => [6,2,4,3,5,1] => [[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,5,6},{3},{4}} => [1,5,3,4,6,2] => [.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,5},{3},{4,6}} => [1,5,3,6,2,4] => [.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1},{2,5},{3},{4},{6}} => [1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
{{1,2,5,6,7},{3,4}} => [2,5,4,3,6,7,1] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,6},{3,4,7}} => [2,5,4,7,6,1,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,6},{3,4},{7}} => [2,5,4,3,6,1,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,7},{3,4,6}} => [2,5,4,6,7,3,1] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,4,6,7}} => [2,5,4,6,1,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,4,6},{7}} => [2,5,4,6,1,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,7},{3,4},{6}} => [2,5,4,3,7,6,1] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,4,7},{6}} => [2,5,4,7,1,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,4},{6,7}} => [2,5,4,3,1,7,6] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,4},{6},{7}} => [2,5,4,3,1,6,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,6,7},{3},{4}} => [2,5,3,4,6,7,1] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,6},{3,7},{4}} => [2,5,7,4,6,1,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,6},{3},{4,7}} => [2,5,3,7,6,1,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,6},{3},{4},{7}} => [2,5,3,4,6,1,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,7},{3,6},{4}} => [2,5,6,4,7,3,1] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,6,7},{4}} => [2,5,6,4,1,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,6},{4,7}} => [2,5,6,7,1,3,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,6},{4},{7}} => [2,5,6,4,1,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,7},{3},{4,6}} => [2,5,3,6,7,4,1] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,7},{4,6}} => [2,5,7,6,1,4,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3},{4,6,7}} => [2,5,3,6,1,7,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3},{4,6},{7}} => [2,5,3,6,1,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5,7},{3},{4},{6}} => [2,5,3,4,7,6,1] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3,7},{4},{6}} => [2,5,7,4,1,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3},{4,7},{6}} => [2,5,3,7,1,6,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3},{4},{6,7}} => [2,5,3,4,1,7,6] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2,5},{3},{4},{6},{7}} => [2,5,3,4,1,6,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5,6,7},{4}} => [2,1,5,4,6,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5,6},{4,7}} => [2,1,5,7,6,3,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5,6},{4},{7}} => [2,1,5,4,6,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5,7},{4,6}} => [2,1,5,6,7,4,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5},{4,6,7}} => [2,1,5,6,3,7,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5},{4,6},{7}} => [2,1,5,6,3,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5,7},{4},{6}} => [2,1,5,4,7,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5},{4,7},{6}} => [2,1,5,7,3,6,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5},{4},{6,7}} => [2,1,5,4,3,7,6] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,2},{3,5},{4},{6},{7}} => [2,1,5,4,3,6,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6,7},{2,3,4,5}} => [6,3,4,5,2,7,1] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,4,5,7}} => [6,3,4,5,7,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,4,5},{7}} => [6,3,4,5,2,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6,7},{2,3,4},{5}} => [6,3,4,2,5,7,1] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,4,7},{5}} => [6,3,4,7,5,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,4},{5,7}} => [6,3,4,2,7,1,5] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,4},{5},{7}} => [6,3,4,2,5,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6,7},{2,3,5},{4}} => [6,3,5,4,2,7,1] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,5,7},{4}} => [6,3,5,4,7,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,5},{4,7}} => [6,3,5,7,2,1,4] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,5},{4},{7}} => [6,3,5,4,2,1,7] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6,7},{2,3},{4,5}} => [6,3,2,5,4,7,1] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,7},{4,5}} => [6,3,7,5,4,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3},{4,5,7}} => [6,3,2,5,7,1,4] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3},{4,5},{7}} => [6,3,2,5,4,1,7] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6,7},{2,3},{4},{5}} => [6,3,2,4,5,7,1] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3,7},{4},{5}} => [6,3,7,4,5,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3},{4,7},{5}} => [6,3,2,7,5,1,4] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3},{4},{5,7}} => [6,3,2,4,7,1,5] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,3},{4},{5},{7}} => [6,3,2,4,5,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2,7},{3,4,5,6}} => [1,7,4,5,6,3,2] => [.,[[[[.,.],.],[.,[.,.]]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2,7},{3,4,5},{6}} => [1,7,4,5,3,6,2] => [.,[[[[.,.],.],[.,[.,.]]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2,7},{3,4,6},{5}} => [1,7,4,6,5,3,2] => [.,[[[[.,.],.],[[.,.],.]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2,7},{3,4},{5,6}} => [1,7,4,3,6,5,2] => [.,[[[[.,.],.],[[.,.],.]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2,7},{3,4},{5},{6}} => [1,7,4,3,5,6,2] => [.,[[[[.,.],.],[.,[.,.]]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5,6,7},{4}} => [1,2,5,4,6,7,3] => [.,[.,[[[.,.],.],[.,[.,.]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5,6},{4,7}} => [1,2,5,7,6,3,4] => [.,[.,[[.,[.,.]],[[.,.],.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5,6},{4},{7}} => [1,2,5,4,6,3,7] => [.,[.,[[[.,.],.],[.,[.,.]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5,7},{4,6}} => [1,2,5,6,7,4,3] => [.,[.,[[[.,.],.],[.,[.,.]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5},{4,6,7}} => [1,2,5,6,3,7,4] => [.,[.,[[.,[.,.]],[.,[.,.]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5},{4,6},{7}} => [1,2,5,6,3,4,7] => [.,[.,[[.,[.,.]],[.,[.,.]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5,7},{4},{6}} => [1,2,5,4,7,6,3] => [.,[.,[[[.,.],.],[[.,.],.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5},{4,7},{6}} => [1,2,5,7,3,6,4] => [.,[.,[[.,[.,.]],[[.,.],.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5},{4},{6,7}} => [1,2,5,4,3,7,6] => [.,[.,[[[.,.],.],[[.,.],.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1},{2},{3,5},{4},{6},{7}} => [1,2,5,4,3,6,7] => [.,[.,[[[.,.],.],[.,[.,.]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,7},{3},{4,5}} => [6,7,3,5,4,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,7},{2,6},{3},{4,5}} => [7,6,3,5,4,2,1] => [[[[[.,.],.],[[.,.],.]],.],.] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,6},{2,7},{3},{4},{5}} => [6,7,3,4,5,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
{{1,7},{2,6},{3},{4},{5}} => [7,6,3,4,5,2,1] => [[[[[.,.],.],[.,[.,.]]],.],.] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges, with leaves being ignored.