Identifier
-
Mp00007:
Alternating sign matrices
—to Dyck path⟶
Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤ
Values
[[1]] => [1,0] => [[]] => ([(0,1)],2) => 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [1,0,1,0,1,0,1,0] => [[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [1,1,0,1,0,1,0,0] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]] => [1,1,0,1,0,1,0,0] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]] => [1,1,0,1,0,1,0,0] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]] => [1,1,0,1,0,1,0,0] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]] => [1,1,0,1,0,1,0,0] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
[[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,1,0,1,0,0,1,0,1,0] => [[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,1,0,1,0,0,1,0,1,0] => [[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,0,1,1,0,1,0,0,1,0] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,0,1,1,0,1,0,0,1,0] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,0,1,0,1,1,0,1,0,0] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,-1,1],[0,1,0,0,0],[0,0,0,1,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[1,0,0,0,0],[0,0,0,1,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => [1,0,1,0,1,1,0,1,0,0] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,-1,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,-1,0,0,1],[0,1,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,-1,1],[0,0,0,1,0],[0,1,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[1,-1,0,1,0],[0,1,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[1,-1,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[1,-1,0,0,1],[0,0,1,0,0],[0,1,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,-1,1,0,0],[0,1,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0]] => [1,1,1,0,1,0,0,1,0,0] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0]] => [1,1,0,1,1,0,1,0,0,0] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 6
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1]] => [1,1,1,0,0,1,1,0,0,0,1,0] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 8
>>> Load all 303 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n−2. For this reason, we do not define the energy of the empty graph.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n−2. For this reason, we do not define the energy of the empty graph.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
to ordered tree
Description
Sends a Dyck path to the ordered tree encoding the heights of the path.
This map is recursively defined as follows: A Dyck path D of semilength n may be decomposed, according to its returns (St000011The number of touch points (or returns) of a Dyck path.), into smaller paths D1,…,Dk of respective semilengths n1,…,nk (so one has n=n1+…nk) each of which has no returns.
Denote by ˜Di the path of semilength ni−1 obtained from Di by removing the initial up- and the final down-step.
This map then sends D to the tree T having a root note with ordered children T1,…,Tk which are again ordered trees computed from D1,…,Dk respectively.
The unique path of semilength 1 is sent to the tree consisting of a single node.
This map is recursively defined as follows: A Dyck path D of semilength n may be decomposed, according to its returns (St000011The number of touch points (or returns) of a Dyck path.), into smaller paths D1,…,Dk of respective semilengths n1,…,nk (so one has n=n1+…nk) each of which has no returns.
Denote by ˜Di the path of semilength ni−1 obtained from Di by removing the initial up- and the final down-step.
This map then sends D to the tree T having a root note with ordered children T1,…,Tk which are again ordered trees computed from D1,…,Dk respectively.
The unique path of semilength 1 is sent to the tree consisting of a single node.
Map
to Dyck path
Description
The Dyck path determined by the last diagonal of the monotone triangle of an alternating sign matrix.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!