Identifier
Values
([],1) => ([],1) => ([],2) => 0
([],2) => ([],2) => ([],3) => 0
([(0,1)],2) => ([(0,1)],2) => ([(1,2)],3) => 0
([],3) => ([],3) => ([],4) => 0
([(1,2)],3) => ([(1,2)],3) => ([(2,3)],4) => 0
([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(1,3),(2,3)],4) => 0
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 0
([],4) => ([],4) => ([],5) => 0
([(2,3)],4) => ([(2,3)],4) => ([(3,4)],5) => 0
([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => ([(2,4),(3,4)],5) => 0
([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(1,4),(2,4),(3,4)],5) => 0
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 0
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 0
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(1,3),(1,4),(2,3),(2,4)],5) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([],5) => ([],5) => ([],6) => 0
([(3,4)],5) => ([(3,4)],5) => ([(4,5)],6) => 0
([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => ([(3,5),(4,5)],6) => 0
([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(2,5),(3,5),(4,5)],6) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,5),(4,5)],6) => 0
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 0
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 0
([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,4),(3,4)],5) => ([(1,2),(3,5),(4,5)],6) => 0
([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => ([(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,5),(2,5),(3,4),(4,5)],6) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of pairs of vertices of a graph with distance 4.
This is the coefficient of the quartic term of the Wiener polynomial.
This is the coefficient of the quartic term of the Wiener polynomial.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.
Map
connected complement
Description
The componentwise connected complement of a graph.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!