Values
([],1) => 1
([],2) => 0
([(0,1)],2) => 1
([],3) => -1
([(1,2)],3) => 0
([(0,2),(1,2)],3) => 1
([(0,1),(0,2),(1,2)],3) => 2
([],4) => -2
([(2,3)],4) => -1
([(1,3),(2,3)],4) => 0
([(0,3),(1,3),(2,3)],4) => 1
([(0,3),(1,2)],4) => 0
([(0,3),(1,2),(2,3)],4) => 1
([(1,2),(1,3),(2,3)],4) => 1
([(0,3),(1,2),(1,3),(2,3)],4) => 2
([(0,2),(0,3),(1,2),(1,3)],4) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
([],5) => -3
([(3,4)],5) => -2
([(2,4),(3,4)],5) => -1
([(1,4),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => 1
([(1,4),(2,3)],5) => -1
([(1,4),(2,3),(3,4)],5) => 0
([(0,1),(2,4),(3,4)],5) => 0
([(2,3),(2,4),(3,4)],5) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(1,3),(1,4),(2,3),(2,4)],5) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 5
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 7
([],6) => -4
([(4,5)],6) => -3
([(3,5),(4,5)],6) => -2
([(2,5),(3,5),(4,5)],6) => -1
([(1,5),(2,5),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
([(2,5),(3,4)],6) => -2
([(2,5),(3,4),(4,5)],6) => -1
([(1,2),(3,5),(4,5)],6) => -1
([(3,4),(3,5),(4,5)],6) => -1
([(1,5),(2,5),(3,4),(4,5)],6) => 0
([(0,1),(2,5),(3,5),(4,5)],6) => 0
([(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(2,4),(2,5),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4)],6) => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(0,5),(1,4),(2,3)],6) => -1
([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,1),(2,5),(3,4),(4,5)],6) => 0
([(1,2),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 2
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of edges minus the number of vertices plus 2 of a graph.
When G is connected and planar, this is also the number of its faces.
When $G=(V,E)$ is a connected graph, this is its $k$-monochromatic index for $k>2$: for $2\leq k\leq |V|$, the $k$-monochromatic index of $G$ is the maximum number of edge colors allowed such that for each set $S$ of $k$ vertices, there exists a monochromatic tree in $G$ which contains all vertices from $S$. It is shown in [1] that for $k>2$, this is given by this statistic.
When G is connected and planar, this is also the number of its faces.
When $G=(V,E)$ is a connected graph, this is its $k$-monochromatic index for $k>2$: for $2\leq k\leq |V|$, the $k$-monochromatic index of $G$ is the maximum number of edge colors allowed such that for each set $S$ of $k$ vertices, there exists a monochromatic tree in $G$ which contains all vertices from $S$. It is shown in [1] that for $k>2$, this is given by this statistic.
References
[1] Li, X., Wu, D. The (vertex-)monochromatic index of a graph arXiv:1603.05338
Code
def statistic(G):
return len(G.edges())-len(G.vertices())+2
Created
Mar 29, 2016 at 11:12 by Christian Stump
Updated
Mar 30, 2016 at 09:36 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!