Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤ
Values
{{1}} => [1] => [.,.] => ([],1) => 0
{{1,2}} => [2,1] => [[.,.],.] => ([(0,1)],2) => 1
{{1},{2}} => [1,2] => [.,[.,.]] => ([(0,1)],2) => 1
{{1},{2,3,5,6},{4}} => [1,3,5,4,6,2] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,3,5},{4,6}} => [1,3,5,6,2,4] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,3,5},{4},{6}} => [1,3,5,4,2,6] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,3},{4,5,6}} => [1,3,2,5,6,4] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,3},{4,5},{6}} => [1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,6},{2,4},{3,5}} => [6,4,5,2,3,1] => [[[[.,.],[.,.]],[.,.]],.] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,6},{2},{3,4,5}} => [6,2,4,5,3,1] => [[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,6},{2},{3,4},{5}} => [6,2,4,3,5,1] => [[[.,.],[[.,.],[.,.]]],.] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,5,6},{3},{4}} => [1,5,3,4,6,2] => [.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,5},{3},{4,6}} => [1,5,3,6,2,4] => [.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1},{2,5},{3},{4},{6}} => [1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,2,5,6,7},{3,4}} => [2,5,4,3,6,7,1] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,6},{3,4,7}} => [2,5,4,7,6,1,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,6},{3,4},{7}} => [2,5,4,3,6,1,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,7},{3,4,6}} => [2,5,4,6,7,3,1] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,4,6,7}} => [2,5,4,6,1,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,4,6},{7}} => [2,5,4,6,1,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,7},{3,4},{6}} => [2,5,4,3,7,6,1] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,4,7},{6}} => [2,5,4,7,1,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,4},{6,7}} => [2,5,4,3,1,7,6] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,4},{6},{7}} => [2,5,4,3,1,6,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,6,7},{3},{4}} => [2,5,3,4,6,7,1] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,6},{3,7},{4}} => [2,5,7,4,6,1,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,6},{3},{4,7}} => [2,5,3,7,6,1,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,6},{3},{4},{7}} => [2,5,3,4,6,1,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,7},{3,6},{4}} => [2,5,6,4,7,3,1] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,6,7},{4}} => [2,5,6,4,1,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,6},{4,7}} => [2,5,6,7,1,3,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,6},{4},{7}} => [2,5,6,4,1,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,7},{3},{4,6}} => [2,5,3,6,7,4,1] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,7},{4,6}} => [2,5,7,6,1,4,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3},{4,6,7}} => [2,5,3,6,1,7,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3},{4,6},{7}} => [2,5,3,6,1,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5,7},{3},{4},{6}} => [2,5,3,4,7,6,1] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3,7},{4},{6}} => [2,5,7,4,1,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3},{4,7},{6}} => [2,5,3,7,1,6,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3},{4},{6,7}} => [2,5,3,4,1,7,6] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,5},{3},{4},{6},{7}} => [2,5,3,4,1,6,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5,6,7},{4}} => [2,1,5,4,6,7,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5,6},{4,7}} => [2,1,5,7,6,3,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5,6},{4},{7}} => [2,1,5,4,6,3,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5,7},{4,6}} => [2,1,5,6,7,4,3] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5},{4,6,7}} => [2,1,5,6,3,7,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5},{4,6},{7}} => [2,1,5,6,3,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5,7},{4},{6}} => [2,1,5,4,7,6,3] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5},{4,7},{6}} => [2,1,5,7,3,6,4] => [[.,.],[[.,[.,.]],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5},{4},{6,7}} => [2,1,5,4,3,7,6] => [[.,.],[[[.,.],.],[[.,.],.]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3,5},{4},{6},{7}} => [2,1,5,4,3,6,7] => [[.,.],[[[.,.],.],[.,[.,.]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6,7},{2,3,4,5}} => [6,3,4,5,2,7,1] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,4,5,7}} => [6,3,4,5,7,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,4,5},{7}} => [6,3,4,5,2,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6,7},{2,3,4},{5}} => [6,3,4,2,5,7,1] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,4,7},{5}} => [6,3,4,7,5,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,4},{5,7}} => [6,3,4,2,7,1,5] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,4},{5},{7}} => [6,3,4,2,5,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,3,4,6,7},{5}} => [1,3,4,6,5,7,2] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3,4,6},{5,7}} => [1,3,4,6,7,2,5] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3,4,6},{5},{7}} => [1,3,4,6,5,2,7] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3,4},{5,6,7}} => [1,3,4,2,6,7,5] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3,4},{5,6},{7}} => [1,3,4,2,6,5,7] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,6,7},{2,3,5},{4}} => [6,3,5,4,2,7,1] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,5,7},{4}} => [6,3,5,4,7,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,5},{4,7}} => [6,3,5,7,2,1,4] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,5},{4},{7}} => [6,3,5,4,2,1,7] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6,7},{2,3},{4,5}} => [6,3,2,5,4,7,1] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,7},{4,5}} => [6,3,7,5,4,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3},{4,5,7}} => [6,3,2,5,7,1,4] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3},{4,5},{7}} => [6,3,2,5,4,1,7] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,3,7},{4,5,6}} => [1,3,7,5,6,4,2] => [.,[[.,.],[[[.,.],[.,.]],.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3,7},{4,5},{6}} => [1,3,7,5,4,6,2] => [.,[[.,.],[[[.,.],[.,.]],.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,6,7},{2,3},{4},{5}} => [6,3,2,4,5,7,1] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3,7},{4},{5}} => [6,3,7,4,5,1,2] => [[[.,[.,.]],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3},{4,7},{5}} => [6,3,2,7,5,1,4] => [[[[.,.],.],[[.,.],.]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3},{4},{5,7}} => [6,3,2,4,7,1,5] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,3},{4},{5},{7}} => [6,3,2,4,5,1,7] => [[[[.,.],.],[.,[.,.]]],[.,.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,3},{4},{5,6,7}} => [1,3,2,4,6,7,5] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3},{4},{5,6},{7}} => [1,3,2,4,6,5,7] => [.,[[.,.],[.,[[.,.],[.,.]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,3},{4,7},{5},{6}} => [1,3,2,7,5,6,4] => [.,[[.,.],[[[.,.],[.,.]],.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,5,7},{2},{3,6}} => [4,2,6,5,7,3,1] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,5},{2},{3,6,7}} => [4,2,6,5,1,7,3] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,5},{2},{3,6},{7}} => [4,2,6,5,1,3,7] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,6,7},{2},{3},{5}} => [4,2,3,6,5,7,1] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,6},{2},{3},{5,7}} => [4,2,3,6,7,1,5] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,6},{2},{3},{5},{7}} => [4,2,3,6,5,1,7] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,7},{2},{3,6},{5}} => [4,2,6,7,5,3,1] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4},{2},{3,6,7},{5}} => [4,2,6,1,5,7,3] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4},{2},{3,6},{5,7}} => [4,2,6,1,7,3,5] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4},{2},{3,6},{5},{7}} => [4,2,6,1,5,3,7] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4},{2},{3},{5,6,7}} => [4,2,3,1,6,7,5] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4},{2},{3},{5,6},{7}} => [4,2,3,1,6,5,7] => [[[.,.],[.,.]],[[.,.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,7},{2,5},{3,4,6}} => [7,5,4,6,2,3,1] => [[[[[.,.],[.,.]],.],[.,.]],.] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,7},{3,4,5,6}} => [1,7,4,5,6,3,2] => [.,[[[[.,.],.],[.,[.,.]]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,7},{3,4,5},{6}} => [1,7,4,5,3,6,2] => [.,[[[[.,.],.],[.,[.,.]]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,7},{3,4,6},{5}} => [1,7,4,6,5,3,2] => [.,[[[[.,.],.],[[.,.],.]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,7},{3,4},{5,6}} => [1,7,4,3,6,5,2] => [.,[[[[.,.],.],[[.,.],.]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1},{2,7},{3,4},{5},{6}} => [1,7,4,3,5,6,2] => [.,[[[[.,.],.],[.,[.,.]]],.]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,7},{2,5},{3,6},{4}} => [7,5,6,4,2,3,1] => [[[[[.,.],[.,.]],.],[.,.]],.] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1},{2,6},{3,5},{4,7}} => [1,6,5,7,3,2,4] => [.,[[[[.,.],[.,.]],.],[.,.]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
>>> Load all 118 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges, with leaves being ignored.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!