Identifier
-
Mp00072:
Permutations
—binary search tree: left to right⟶
Binary trees
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤ
Values
[1] => [.,.] => [[]] => ([(0,1)],2) => 1
[1,4,3,2] => [.,[[[.,.],.],.]] => [[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,3,2,1] => [[[[.,.],.],.],.] => [[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]] => [[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,2,1,5,4] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,2,5,1,4] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,2,5,4,1] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,5,2,1,4] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,5,2,4,1] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[3,5,4,2,1] => [[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[5,2,1,4,3] => [[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[5,2,4,1,3] => [[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[5,2,4,3,1] => [[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[5,4,1,3,2] => [[[.,[[.,.],.]],.],.] => [[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[1,2,5,3,6,4] => [.,[.,[[.,[.,.]],[.,.]]]] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[1,2,5,6,3,4] => [.,[.,[[.,[.,.]],[.,.]]]] => [[[[[]],[[]]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[1,3,2,4,6,5] => [.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[1,3,4,2,6,5] => [.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[1,3,4,6,2,5] => [.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[1,3,4,6,5,2] => [.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[1,6,2,3,5,4] => [.,[[.,[.,[[.,.],.]]],.]] => [[[[[],[]]],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[2,1,5,3,4,6] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,1,5,3,6,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,1,5,6,3,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,1,3,4,6] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,1,3,6,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,1,6,3,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,3,1,4,6] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,3,1,6,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,3,4,1,6] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,3,4,6,1] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,3,6,1,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,3,6,4,1] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,6,1,3,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,6,3,1,4] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[2,5,6,3,4,1] => [[.,.],[[.,[.,.]],[.,.]]] => [[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[3,2,1,4,6,5] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,2,4,1,6,5] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,2,4,6,1,5] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,2,4,6,5,1] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,4,2,1,6,5] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,4,2,6,1,5] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,4,2,6,5,1] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,4,6,2,1,5] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,4,6,2,5,1] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[3,4,6,5,2,1] => [[[.,.],.],[.,[[.,.],.]]] => [[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,1,3,2,6,5] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,1,3,6,2,5] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,1,3,6,5,2] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,1,6,3,2,5] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,1,6,3,5,2] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,1,6,5,3,2] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,6,1,3,2,5] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,6,1,3,5,2] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,6,1,5,3,2] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[4,6,5,1,3,2] => [[.,[[.,.],.]],[[.,.],.]] => [[[],[]],[[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[5,3,1,2,4,6] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,1,2,6,4] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,1,4,2,6] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,1,4,6,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,1,6,2,4] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,1,6,4,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,4,1,2,6] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,4,1,6,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,4,6,1,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,6,1,2,4] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,6,1,4,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,3,6,4,1,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,6,3,1,2,4] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,6,3,1,4,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[5,6,3,4,1,2] => [[[.,[.,.]],[.,.]],[.,.]] => [[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[6,1,4,2,3,5] => [[.,[[.,[.,.]],[.,.]]],.] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[6,1,4,2,5,3] => [[.,[[.,[.,.]],[.,.]]],.] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[6,1,4,5,2,3] => [[.,[[.,[.,.]],[.,.]]],.] => [[[[]],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[6,2,1,3,5,4] => [[[.,.],[.,[[.,.],.]]],.] => [[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[6,2,3,1,5,4] => [[[.,.],[.,[[.,.],.]]],.] => [[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[6,2,3,5,1,4] => [[[.,.],[.,[[.,.],.]]],.] => [[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[6,2,3,5,4,1] => [[[.,.],[.,[[.,.],.]]],.] => [[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[6,5,1,2,4,3] => [[[.,[.,[[.,.],.]]],.],.] => [[[[],[]]],[],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
to ordered tree: left child = left brother
Description
Return an ordered tree of size $n+1$ by the following recursive rule:
- if $x$ is the left child of $y$, $x$ becomes the left brother of $y$,
- if $x$ is the right child of $y$, $x$ becomes the last child of $y$.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!