Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000454: Graphs ⟶ ℤ
Values
{{1}} => [1] => ([],1) => ([],1) => 0
{{1,2}} => [2,1] => ([],2) => ([],2) => 0
{{1},{2}} => [1,2] => ([(0,1)],2) => ([(0,1)],2) => 1
{{1,2,3}} => [2,3,1] => ([(1,2)],3) => ([(1,2)],3) => 1
{{1,3},{2}} => [3,2,1] => ([],3) => ([],3) => 0
{{1,2},{3,4}} => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
{{1,3},{2,4}} => [3,4,1,2] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
{{1,4},{2,3}} => [4,3,2,1] => ([],4) => ([],4) => 0
{{1},{2,3},{4}} => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
{{1,4},{2},{3}} => [4,2,3,1] => ([(2,3)],4) => ([(2,3)],4) => 1
{{1,2,4,5},{3}} => [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
{{1,2},{3},{4,5}} => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
{{1,3,5},{2},{4}} => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
{{1,3},{2},{4},{5}} => [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
{{1,4},{2,3},{5}} => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
{{1,5},{2,3,4}} => [5,3,4,2,1] => ([(3,4)],5) => ([(3,4)],5) => 1
{{1},{2,3,4},{5}} => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
{{1,4},{2,5},{3}} => [4,5,3,1,2] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
{{1,5},{2,4},{3}} => [5,4,3,2,1] => ([],5) => ([],5) => 0
{{1},{2,5},{3,4}} => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
{{1},{2},{3,5},{4}} => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
{{1,2,3,6},{4,5}} => [2,3,6,5,4,1] => ([(1,5),(5,2),(5,3),(5,4)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1,2,4},{3,5,6}} => [2,4,5,1,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
{{1,2,5,6},{3},{4}} => [2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 2
{{1,2,6},{3,5},{4}} => [2,6,5,4,3,1] => ([(1,2),(1,3),(1,4),(1,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1,2},{3,5},{4},{6}} => [2,1,5,4,3,6] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
{{1,2},{3},{4},{5,6}} => [2,1,3,4,6,5] => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,3,4,6},{2,5}} => [3,5,4,6,2,1] => ([(2,3),(2,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
{{1,3,4,6},{2},{5}} => [3,2,4,6,5,1] => ([(1,5),(2,5),(5,3),(5,4)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1,3,4},{2},{5},{6}} => [3,2,4,1,5,6] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,3},{2,5},{4,6}} => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
{{1,3},{2},{4,6},{5}} => [3,2,1,6,5,4] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
{{1,4,5,6},{2,3}} => [4,3,2,5,6,1] => ([(1,5),(2,5),(3,5),(5,4)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1,4,5},{2,3,6}} => [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2
{{1},{2,3,4,5},{6}} => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
{{1,5},{2,3},{4},{6}} => [5,3,2,4,1,6] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,6},{2,3},{4,5}} => [6,3,2,5,4,1] => ([(2,4),(2,5),(3,4),(3,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
{{1,5,6},{2,4},{3}} => [5,4,3,2,6,1] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
{{1,6},{2,4},{3,5}} => [6,4,5,2,3,1] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
{{1},{2,4},{3,5},{6}} => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
{{1},{2,4},{3},{5,6}} => [1,4,3,2,6,5] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
{{1,5},{2,6},{3,4}} => [5,6,4,3,1,2] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
{{1,6},{2,5},{3,4}} => [6,5,4,3,2,1] => ([],6) => ([],6) => 0
{{1,6},{2},{3,4},{5}} => [6,2,4,3,5,1] => ([(2,3),(2,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
{{1},{2},{3,4,6},{5}} => [1,2,4,6,5,3] => ([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,5},{2,6},{3},{4}} => [5,6,3,4,1,2] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
{{1,6},{2,5},{3},{4}} => [6,5,3,4,2,1] => ([(4,5)],6) => ([(4,5)],6) => 1
{{1},{2,6},{3},{4,5}} => [1,6,3,5,4,2] => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,2,3,4,6},{5,7}} => [2,3,4,6,7,1,5] => ([(0,6),(1,4),(3,2),(4,5),(5,3),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2,3,7},{4},{5,6}} => [2,3,7,4,6,5,1] => ([(1,6),(5,3),(5,4),(6,2),(6,5)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1,2,4,6,7},{3,5}} => [2,4,5,6,3,7,1] => ([(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2
{{1,2,5,7},{3,4},{6}} => [2,5,4,3,7,6,1] => ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 3
{{1,2,7},{3,4,6},{5}} => [2,7,4,6,5,3,1] => ([(1,4),(1,5),(1,6),(6,2),(6,3)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1,2,6,7},{3},{4},{5}} => [2,6,3,4,5,7,1] => ([(1,3),(1,5),(2,6),(3,6),(4,2),(5,4)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2
{{1,2,6},{3,7},{4},{5}} => [2,6,7,4,5,1,3] => ([(0,6),(1,4),(1,5),(1,6),(4,3),(5,2)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,2},{3},{4},{5},{6,7}} => [2,1,3,4,5,7,6] => ([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,3,4,5,7},{2,6}} => [3,6,4,5,7,2,1] => ([(2,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2
{{1,3,4,5,7},{2},{6}} => [3,2,4,5,7,6,1] => ([(1,6),(2,6),(3,4),(3,5),(6,3)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1,3,4,5},{2},{6},{7}} => [3,2,4,5,1,6,7] => ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,3},{2,4,5,6,7}} => [3,4,1,5,6,7,2] => ([(0,4),(1,3),(1,6),(4,6),(5,2),(6,5)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,3,7},{2,4,6},{5}} => [3,4,7,6,5,2,1] => ([(2,6),(6,3),(6,4),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,3,7},{2,4},{5},{6}} => [3,4,7,2,5,6,1] => ([(1,6),(2,3),(3,5),(3,6),(6,4)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1,3},{2,4},{5},{6},{7}} => [3,4,1,2,5,6,7] => ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,3,6},{2,5,7},{4}} => [3,5,6,4,7,1,2] => ([(0,4),(1,3),(1,5),(2,6),(3,6),(5,2)],7) => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2
{{1,3,6,7},{2},{4,5}} => [3,2,6,5,4,7,1] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 3
{{1,3,6},{2,7},{4,5}} => [3,7,6,5,4,1,2] => ([(0,6),(1,2),(1,3),(1,4),(1,5)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,3},{2,7},{4},{5},{6}} => [3,7,1,4,5,6,2] => ([(0,4),(0,6),(1,3),(1,6),(5,2),(6,5)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,4,6},{2,3,5},{7}} => [4,3,5,6,2,1,7] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,7},{2,3,5,6}} => [4,3,5,7,6,2,1] => ([(2,6),(3,6),(6,4),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,4,7},{2,3},{5,6}} => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 3
{{1},{2,3,4,5,6},{7}} => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => 2
{{1,5,6,7},{2,3},{4}} => [5,3,2,4,6,7,1] => ([(1,6),(2,5),(3,5),(5,6),(6,4)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1,5,6},{2,3,7},{4}} => [5,3,7,4,6,1,2] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(4,6)],7) => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2
{{1,7},{2,3,5,6},{4}} => [7,3,5,4,6,2,1] => ([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
{{1,6},{2,3},{4},{5},{7}} => [6,3,2,4,5,1,7] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,7},{2,3},{4},{5,6}} => [7,3,2,4,6,5,1] => ([(2,6),(3,6),(6,4),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,4},{2,5},{3,7},{6}} => [4,5,7,1,2,6,3] => ([(0,5),(1,4),(4,2),(4,6),(5,3),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,4,7},{2,6},{3,5}} => [4,6,5,7,3,2,1] => ([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
{{1,4,7},{2,6},{3},{5}} => [4,6,3,7,5,2,1] => ([(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2
{{1,4},{2,7},{3,6},{5}} => [4,7,6,1,5,3,2] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,5,7},{2,4,6},{3}} => [5,4,3,6,7,2,1] => ([(2,6),(3,6),(4,6),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,5},{2,4,6},{3,7}} => [5,4,7,6,1,2,3] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
{{1,5},{2,4},{3,6},{7}} => [5,4,6,2,1,3,7] => ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,6,7},{2,4,5},{3}} => [6,4,3,5,2,7,1] => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1},{2,4,7},{3,5,6}} => [1,4,5,7,6,3,2] => ([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,7},{2,4,6},{3},{5}} => [7,4,3,6,5,2,1] => ([(3,5),(3,6),(4,5),(4,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
{{1,7},{2,4},{3},{5},{6}} => [7,4,3,2,5,6,1] => ([(2,6),(3,6),(4,6),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,5,7},{3,4}} => [6,5,4,3,7,1,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,7},{2,5},{3,4},{6}} => [7,5,4,3,2,6,1] => ([(2,6),(3,6),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,7},{3,4,5}} => [6,7,4,5,3,1,2] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
{{1,7},{2,6},{3,4,5}} => [7,6,4,5,3,2,1] => ([(5,6)],7) => ([(5,6)],7) => 1
{{1,7},{2},{3,4,5},{6}} => [7,2,4,5,3,6,1] => ([(2,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2
{{1},{2},{3,4,5,7},{6}} => [1,2,4,5,7,6,3] => ([(0,6),(4,5),(5,2),(5,3),(6,1),(6,4)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,5},{2,6,7},{3},{4}} => [5,6,3,4,1,7,2] => ([(0,5),(1,4),(2,3),(2,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,5},{2,6},{3},{4},{7}} => [5,6,3,4,1,2,7] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,5},{2},{3,6},{4,7}} => [5,2,6,7,1,3,4] => ([(0,6),(1,5),(2,5),(2,6),(5,3),(6,4)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,5,7},{2},{3},{4,6}} => [5,2,3,6,7,4,1] => ([(1,6),(2,3),(3,5),(3,6),(6,4)],7) => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
{{1,5},{2,7},{3},{4},{6}} => [5,7,3,4,1,6,2] => ([(0,5),(1,4),(1,6),(2,3),(2,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
{{1,6},{2,5},{3},{4,7}} => [6,5,3,7,2,1,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
{{1,7},{2,5},{3,6},{4}} => [7,5,6,4,2,3,1] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
{{1},{2,5},{3,7},{4,6}} => [1,5,7,6,2,4,3] => ([(0,5),(0,6),(5,3),(5,4),(6,1),(6,2)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
>>> Load all 110 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!