Processing math: 100%

Identifier
Values
[[1],[]] => ([],1) => ([],1) => 0
[[2],[]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[2,1],[1]] => ([],2) => ([],2) => 0
[[3,1],[1]] => ([(1,2)],3) => ([(1,2)],3) => 1
[[3,2],[2]] => ([(1,2)],3) => ([(1,2)],3) => 1
[[2,2,1],[1,1]] => ([(1,2)],3) => ([(1,2)],3) => 1
[[2,1,1],[1]] => ([(1,2)],3) => ([(1,2)],3) => 1
[[3,2,1],[2,1]] => ([],3) => ([],3) => 0
[[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[4,2],[2]] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
[[3,1,1],[1]] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
[[4,2,1],[2,1]] => ([(2,3)],4) => ([(2,3)],4) => 1
[[4,3,1],[3,1]] => ([(2,3)],4) => ([(2,3)],4) => 1
[[3,3,2],[2,2]] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
[[4,3,2],[3,2]] => ([(2,3)],4) => ([(2,3)],4) => 1
[[2,2,1,1],[1,1]] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
[[3,3,2,1],[2,2,1]] => ([(2,3)],4) => ([(2,3)],4) => 1
[[3,2,2,1],[2,1,1]] => ([(2,3)],4) => ([(2,3)],4) => 1
[[3,2,1,1],[2,1]] => ([(2,3)],4) => ([(2,3)],4) => 1
[[4,3,2,1],[3,2,1]] => ([],4) => ([],4) => 0
[[3,3,1],[1,1]] => ([(1,2),(1,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
[[5,3,1],[3,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[5,3,2],[3,2]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[4,2,2,1],[2,1,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[4,2,1,1],[2,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[5,3,2,1],[3,2,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[3,2,2],[2]] => ([(1,2),(1,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 2
[[5,4,2],[4,2]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[4,3,1,1],[3,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[5,4,2,1],[4,2,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[4,4,3,1],[3,3,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[5,4,3,1],[4,3,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[4,4,3,2],[3,3,2]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[4,3,3,2],[3,2,2]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[5,4,3,2],[4,3,2]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[3,3,2,2,1],[2,2,1,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[3,3,2,1,1],[2,2,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[4,4,3,2,1],[3,3,2,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[3,2,2,1,1],[2,1,1]] => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 1
[[4,3,3,2,1],[3,2,2,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[4,3,2,2,1],[3,2,1,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[4,3,2,1,1],[3,2,1]] => ([(3,4)],5) => ([(3,4)],5) => 1
[[5,4,3,2,1],[4,3,2,1]] => ([],5) => ([],5) => 0
[[4,4,2],[2,2]] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[4,2,2],[2]] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[6,4,2],[4,2]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[3,3,1,1],[1,1]] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[4,4,2,1],[2,2,1]] => ([(2,3),(2,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
[[5,3,1,1],[3,1]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[6,4,2,1],[4,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,4,3,1],[4,3,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,3,3,2],[3,2,2]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[6,4,3,2],[4,3,2]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[4,2,2,1,1],[2,1,1]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[5,3,3,2,1],[3,2,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,3,2,2,1],[3,2,1,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,3,2,1,1],[3,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,4,3,2,1],[4,3,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[4,3,3,1],[3,1,1]] => ([(2,3),(2,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
[[6,5,3,1],[5,3,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,5,3,2],[5,3,2]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,2,2,1],[4,2,1,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,2,1,1],[4,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,5,3,2,1],[5,3,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[3,3,2,2],[2,2]] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[5,5,4,2],[4,4,2]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[4,3,2,2],[3,2]] => ([(2,3),(2,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 2
[[6,5,4,2],[5,4,2]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[4,4,3,1,1],[3,3,1]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[5,5,4,2,1],[4,4,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,3,1,1],[4,3,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,5,4,2,1],[5,4,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[5,5,4,3,1],[4,4,3,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,4,3,1],[4,3,3,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,5,4,3,1],[5,4,3,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[4,4,3,3,2],[3,3,2,2]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[5,5,4,3,2],[4,4,3,2]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,4,3,2],[4,3,3,2]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,3,3,2],[4,3,2,2]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[6,5,4,3,2],[5,4,3,2]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[3,3,2,2,1,1],[2,2,1,1]] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[[4,4,3,3,2,1],[3,3,2,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[4,4,3,2,2,1],[3,3,2,1,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[4,4,3,2,1,1],[3,3,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,5,4,3,2,1],[4,4,3,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[4,3,3,2,2,1],[3,2,2,1,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[4,3,3,2,1,1],[3,2,2,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,4,3,2,1],[4,3,3,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[4,3,2,2,1,1],[3,2,1,1]] => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => 1
[[5,4,3,3,2,1],[4,3,2,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[5,4,3,2,2,1],[4,3,2,1,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[5,4,3,2,1,1],[4,3,2,1]] => ([(4,5)],6) => ([(4,5)],6) => 1
[[6,5,4,3,2,1],[5,4,3,2,1]] => ([],6) => ([],6) => 0
[[5,2,2],[2]] => ([(0,5),(1,3),(1,4),(3,6),(4,6),(5,2)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[5,5,3],[3,3]] => ([(0,5),(1,3),(1,4),(3,6),(4,6),(5,2)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[4,4,2,1],[2,2]] => ([(0,2),(0,3),(1,4),(1,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[5,5,3,1],[3,3,1]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[5,3,3,1],[3,1,1]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[7,5,3,1],[5,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[4,4,2,2],[2,2,1]] => ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
>>> Load all 203 entries. <<<
[[5,5,3,2],[3,3,2]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[7,5,3,2],[5,3,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[3,3,1,1,1],[1,1]] => ([(0,5),(1,3),(1,4),(3,6),(4,6),(5,2)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[4,4,2,2,1],[2,2,1,1]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[4,4,2,1,1],[2,2,1]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[5,5,3,2,1],[3,3,2,1]] => ([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
[[6,4,2,2,1],[4,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,4,2,1,1],[4,2,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,5,3,2,1],[5,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[4,3,2,2],[2,2]] => ([(0,2),(0,3),(1,4),(1,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[5,3,2,2],[3,2]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[7,5,4,2],[5,4,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,4,3,1,1],[4,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,5,4,2,1],[5,4,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,4,4,3,1],[4,3,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,5,4,3,1],[5,4,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,4,4,3,2],[4,3,3,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,4,3,3,2],[4,3,2,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,5,4,3,2],[5,4,3,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,3,3,2,2,1],[3,2,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,3,3,2,1,1],[3,2,2,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,4,4,3,2,1],[4,3,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,3,2,2,1,1],[3,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,4,3,3,2,1],[4,3,2,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,4,3,2,2,1],[4,3,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,4,3,2,1,1],[4,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,5,4,3,2,1],[5,4,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[4,4,2,2],[3,2]] => ([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[5,4,4,2],[4,2,2]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[5,4,2,2],[4,2]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[7,6,4,2],[6,4,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[4,3,3,1,1],[3,1,1]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[5,4,4,2,1],[4,2,2,1]] => ([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
[[6,5,3,1,1],[5,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,6,4,2,1],[6,4,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,6,4,3,1],[6,4,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,3,3,2],[5,3,2,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,6,4,3,2],[6,4,3,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,4,2,2,1,1],[4,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,5,3,3,2,1],[5,3,2,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,3,2,2,1],[5,3,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,3,2,1,1],[5,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,6,4,3,2,1],[6,4,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[4,4,3,3,1],[3,3,1,1]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[6,6,5,3,1],[5,5,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,4,3,3,1],[4,3,1,1]] => ([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
[[7,6,5,3,1],[6,5,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,6,5,3,2],[5,5,3,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[7,6,5,3,2],[6,5,3,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,5,4,2,2,1],[4,4,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,5,4,2,1,1],[4,4,2,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,6,5,3,2,1],[5,5,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,2,2,1],[5,4,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,2,1,1],[5,4,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,6,5,3,2,1],[6,5,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[3,3,3,2,2],[2,2,2]] => ([(0,5),(1,3),(1,4),(3,6),(4,6),(5,2)],7) => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2
[[4,4,3,2,2],[3,3,2]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[6,6,5,4,2],[5,5,4,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[4,3,3,2,2],[3,2,2]] => ([(1,3),(2,4),(2,5),(4,6),(5,6)],7) => ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2
[[6,5,5,4,2],[5,4,4,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,4,3,2,2],[4,3,2]] => ([(3,4),(3,5),(4,6),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => 2
[[7,6,5,4,2],[6,5,4,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,5,4,3,1,1],[4,4,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,6,5,4,2,1],[5,5,4,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,4,4,3,1,1],[4,3,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,5,5,4,2,1],[5,4,4,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,3,1,1],[5,4,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,6,5,4,2,1],[6,5,4,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[5,5,4,4,3,1],[4,4,3,3,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,6,5,4,3,1],[5,5,4,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,5,4,3,1],[5,4,4,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,4,3,1],[5,4,3,3,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,6,5,4,3,1],[6,5,4,3,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[5,5,4,4,3,2],[4,4,3,3,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,5,4,3,3,2],[4,4,3,2,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,6,5,4,3,2],[5,5,4,3,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,4,4,3,3,2],[4,3,3,2,2]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[6,5,5,4,3,2],[5,4,4,3,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,4,3,2],[5,4,3,3,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,3,3,2],[5,4,3,2,2]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[7,6,5,4,3,2],[6,5,4,3,2]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[4,4,3,3,2,2,1],[3,3,2,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[4,4,3,3,2,1,1],[3,3,2,2,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,5,4,4,3,2,1],[4,4,3,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[4,4,3,2,2,1,1],[3,3,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,5,4,3,3,2,1],[4,4,3,2,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,5,4,3,2,2,1],[4,4,3,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,5,4,3,2,1,1],[4,4,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,6,5,4,3,2,1],[5,5,4,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[4,3,3,2,2,1,1],[3,2,2,1,1]] => ([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => 1
[[5,4,4,3,3,2,1],[4,3,3,2,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,4,4,3,2,2,1],[4,3,3,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,4,4,3,2,1,1],[4,3,3,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,5,4,3,2,1],[5,4,4,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[5,4,3,3,2,2,1],[4,3,2,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[5,4,3,3,2,1,1],[4,3,2,2,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,4,3,2,1],[5,4,3,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[5,4,3,2,2,1,1],[4,3,2,1,1]] => ([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => 1
[[6,5,4,3,3,2,1],[5,4,3,2,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[6,5,4,3,2,2,1],[5,4,3,2,1,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[6,5,4,3,2,1,1],[5,4,3,2,1]] => ([(5,6)],7) => ([(5,6)],7) => 1
[[7,6,5,4,3,2,1],[6,5,4,3,2,1]] => ([],7) => ([],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.