Identifier
Values
[[1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1],[2]] => ([],1) => ([],1) => 0
[[1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2]] => ([],1) => ([],1) => 0
[[1,2],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1],[2],[3]] => ([],1) => ([],1) => 0
[[1,1,1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2]] => ([],1) => ([],1) => 0
[[1,1,2],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2,2]] => ([],1) => ([],1) => 0
[[1],[2],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2],[3]] => ([],1) => ([],1) => 0
[[1,2],[2],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2]] => ([],1) => ([],1) => 0
[[1,1,1,2],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,2]] => ([],1) => ([],1) => 0
[[1,1,2],[2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,2],[2],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[1],[2],[3],[4]] => ([],1) => ([],1) => 0
[[1,1,1,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2],[3]] => ([],1) => ([],1) => 0
[[1,1,2],[2],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2,2],[3]] => ([],1) => ([],1) => 0
[[1,1],[2,3],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2]] => ([],1) => ([],1) => 0
[[1,1,1,1,2],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2]] => ([],1) => ([],1) => 0
[[1,1,1,2],[2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,2,2]] => ([],1) => ([],1) => 0
[[1],[2],[3],[5]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,2],[2],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[1,1],[2,2],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2],[3],[4]] => ([],1) => ([],1) => 0
[[1,2],[2],[3],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2],[3]] => ([],1) => ([],1) => 0
[[1,1,1,2],[2],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,2,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,2],[3]] => ([],1) => ([],1) => 0
[[1,1,1],[2,3],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,2],[2,2],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2,2],[3,3]] => ([],1) => ([],1) => 0
[[1,1,1,1,1,1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1,1],[2]] => ([],1) => ([],1) => 0
[[1,1,1,1,1,2],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2,2]] => ([],1) => ([],1) => 0
[[1,1,1,1,2],[2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2,2]] => ([],1) => ([],1) => 0
[[1,1,1,2],[2,2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2],[3],[5]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,2],[2],[3],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[1],[2],[3],[4],[5]] => ([],1) => ([],1) => 0
[[1,1,1,1],[2],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,2],[2],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[1,1,1],[2,2],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,2],[2,2],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[1,1,1],[2],[3],[4]] => ([],1) => ([],1) => 0
[[1,1,2],[2],[3],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2,2],[3,4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[2,2],[3],[4]] => ([],1) => ([],1) => 0
[[1,1],[2,3],[3],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1,1],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2],[3]] => ([],1) => ([],1) => 0
[[1,1,1,1,2],[2],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2],[3]] => ([],1) => ([],1) => 0
[[1,1,1,1],[2,3],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,2],[2,2],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,2,2],[3]] => ([],1) => ([],1) => 0
[[1,1,1],[2,2,3],[3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1],[2,2],[3,3]] => ([],1) => ([],1) => 0
[[1,1,2],[2,2],[3,3]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1,1,1,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1,1,1],[2]] => ([],1) => ([],1) => 0
[[1,1,1,1,1,1,2],[2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1,1],[2,2]] => ([],1) => ([],1) => 0
[[1,1,1,1,1,2],[2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2,2,2]] => ([],1) => ([],1) => 0
[[1,1,1,1,2],[2,2,2]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2,2,2]] => ([],1) => ([],1) => 0
[[1]] => ([],1) => ([],1) => 0
[[1,1,1,1],[2,2,2],[3,3],[4]] => ([],1) => ([],1) => 0
[[1,1,1,2],[2,2,2],[3,3],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2,3],[3,3],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1],[2,2,2],[3,4],[4]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,2],[2,2,2],[3,4],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]] => ([],1) => ([],1) => 0
[[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]] => ([(0,1)],2) => ([(0,1)],2) => 1
>>> Load all 123 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
subcrystal
Description
The underlying poset of the subcrystal obtained by applying the raising operators to a semistandard tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!