Identifier
-
Mp00229:
Dyck paths
—Delest-Viennot⟶
Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000454: Graphs ⟶ ℤ
Values
[1,0] => [1,0] => ([],1) => ([],1) => 0
[1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => ([],2) => 0
[1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => ([],2) => 0
[1,0,1,0,1,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,0,1,1,0,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,1,0,0,1,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,1,0,1,0,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 1
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 1
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
>>> Load all 177 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
Delest-Viennot
Description
Return the Dyck path corresponding to the parallelogram polyomino obtained by applying Delest-Viennot's bijection.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!