Identifier
Values
[1,0,1,0,1,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 0
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 0
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 0
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => 0
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
  • First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
    For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
    $$NE\ NNEE\ NNNNEEEE\ NE.$$
  • Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
    The complete path we obtain in thus
    $$NENNENNNENEEENEE.$$
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.