Identifier
Values
[.,.] => ([],1) => ([],1) => ([],1) => 0
[.,[.,.]] => ([(0,1)],2) => ([],2) => ([],1) => 0
[[.,.],.] => ([(0,1)],2) => ([],2) => ([],1) => 0
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 0
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 0
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 0
[[[.,.],.],.] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 0
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 0
[.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 0
[.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 0
[.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[.,[[[.,.],.],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[[[.,[.,.]],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[.,[[[[.,.],.],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[[.,[.,[.,.]]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[[.,[[.,.],.]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[[[.,[.,.]],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[.,[[[[[.,.],.],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[.,[.,[.,[.,.]]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[.,[.,[[.,.],.]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[.,[[.,[.,.]],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[.,[[[.,.],.],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[[[.,[.,.]],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[.,[[[[[[.,.],.],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
>>> Load all 127 entries. <<<
[[.,[.,[[[.,[.,.]],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[.,[[[[.,.],.],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[.,[.,[.,[.,.]]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[.,[.,[[.,.],.]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[.,[[.,[.,.]],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[.,[[[.,.],.],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[[.,[.,[.,.]]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[[.,[[.,.],.]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[[[.,[.,.]],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[.,[[[[[.,.],.],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[.,[.,[.,[.,.]]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[.,[.,[[.,.],.]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[.,[[.,[.,.]],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[.,[[[.,.],.],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[[.,[.,[.,.]]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[[.,[[.,.],.]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[[[.,[.,.]],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[.,[[[[.,.],.],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[.,[.,[.,[.,.]]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[.,[.,[[.,.],.]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[.,[[.,[.,.]],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[.,[[[.,.],.],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[[.,[.,[.,.]]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[[.,[[.,.],.]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[[[.,[.,.]],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
[[[[[[[.,.],.],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The hyper-Wiener index of a connected graph.
This is
$$ \sum_{\{u,v\}\subseteq V} d(u,v)+d(u,v)^2. $$
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
incomparability graph
Description
The incomparability graph of a poset.