Identifier
- St000473: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>0
[2]=>1
[1,1]=>0
[3]=>1
[2,1]=>1
[1,1,1]=>0
[4]=>1
[3,1]=>1
[2,2]=>2
[2,1,1]=>0
[1,1,1,1]=>0
[5]=>1
[4,1]=>1
[3,2]=>2
[3,1,1]=>1
[2,2,1]=>2
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>1
[5,1]=>1
[4,2]=>2
[4,1,1]=>1
[3,3]=>2
[3,2,1]=>2
[3,1,1,1]=>0
[2,2,2]=>3
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>1
[6,1]=>1
[5,2]=>2
[5,1,1]=>1
[4,3]=>2
[4,2,1]=>2
[4,1,1,1]=>1
[3,3,1]=>2
[3,2,2]=>3
[3,2,1,1]=>1
[3,1,1,1,1]=>0
[2,2,2,1]=>3
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>1
[7,1]=>1
[6,2]=>2
[6,1,1]=>1
[5,3]=>2
[5,2,1]=>2
[5,1,1,1]=>1
[4,4]=>2
[4,3,1]=>2
[4,2,2]=>3
[4,2,1,1]=>1
[4,1,1,1,1]=>0
[3,3,2]=>3
[3,3,1,1]=>2
[3,2,2,1]=>3
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>0
[2,2,2,2]=>4
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>1
[8,1]=>1
[7,2]=>2
[7,1,1]=>1
[6,3]=>2
[6,2,1]=>2
[6,1,1,1]=>1
[5,4]=>2
[5,3,1]=>2
[5,2,2]=>3
[5,2,1,1]=>1
[5,1,1,1,1]=>1
[4,4,1]=>2
[4,3,2]=>3
[4,3,1,1]=>2
[4,2,2,1]=>3
[4,2,1,1,1]=>1
[4,1,1,1,1,1]=>0
[3,3,3]=>3
[3,3,2,1]=>3
[3,3,1,1,1]=>0
[3,2,2,2]=>4
[3,2,2,1,1]=>1
[3,2,1,1,1,1]=>0
[3,1,1,1,1,1,1]=>0
[2,2,2,2,1]=>4
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>1
[9,1]=>1
[8,2]=>2
[8,1,1]=>1
[7,3]=>2
[7,2,1]=>2
[7,1,1,1]=>1
[6,4]=>2
[6,3,1]=>2
[6,2,2]=>3
[6,2,1,1]=>1
[6,1,1,1,1]=>1
[5,5]=>2
[5,4,1]=>2
[5,3,2]=>3
[5,3,1,1]=>2
[5,2,2,1]=>3
[5,2,1,1,1]=>1
[5,1,1,1,1,1]=>0
[4,4,2]=>3
[4,4,1,1]=>2
[4,3,3]=>3
[4,3,2,1]=>3
[4,3,1,1,1]=>1
[4,2,2,2]=>4
[4,2,2,1,1]=>1
[4,2,1,1,1,1]=>0
[4,1,1,1,1,1,1]=>0
[3,3,3,1]=>3
[3,3,2,2]=>4
[3,3,2,1,1]=>2
[3,3,1,1,1,1]=>0
[3,2,2,2,1]=>4
[3,2,2,1,1,1]=>0
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>0
[2,2,2,2,2]=>5
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>1
[10,1]=>1
[9,2]=>2
[9,1,1]=>1
[8,3]=>2
[8,2,1]=>2
[8,1,1,1]=>1
[7,4]=>2
[7,3,1]=>2
[7,2,2]=>3
[7,2,1,1]=>1
[7,1,1,1,1]=>1
[6,5]=>2
[6,4,1]=>2
[6,3,2]=>3
[6,3,1,1]=>2
[6,2,2,1]=>3
[6,2,1,1,1]=>1
[6,1,1,1,1,1]=>1
[5,5,1]=>2
[5,4,2]=>3
[5,4,1,1]=>2
[5,3,3]=>3
[5,3,2,1]=>3
[5,3,1,1,1]=>1
[5,2,2,2]=>4
[5,2,2,1,1]=>1
[5,2,1,1,1,1]=>1
[5,1,1,1,1,1,1]=>0
[4,4,3]=>3
[4,4,2,1]=>3
[4,4,1,1,1]=>2
[4,3,3,1]=>3
[4,3,2,2]=>4
[4,3,2,1,1]=>2
[4,3,1,1,1,1]=>0
[4,2,2,2,1]=>4
[4,2,2,1,1,1]=>1
[4,2,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1]=>0
[3,3,3,2]=>4
[3,3,3,1,1]=>3
[3,3,2,2,1]=>4
[3,3,2,1,1,1]=>0
[3,3,1,1,1,1,1]=>0
[3,2,2,2,2]=>5
[3,2,2,2,1,1]=>1
[3,2,2,1,1,1,1]=>0
[3,2,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,1]=>5
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>1
[11,1]=>1
[10,2]=>2
[10,1,1]=>1
[9,3]=>2
[9,2,1]=>2
[9,1,1,1]=>1
[8,4]=>2
[8,3,1]=>2
[8,2,2]=>3
[8,2,1,1]=>1
[8,1,1,1,1]=>1
[7,5]=>2
[7,4,1]=>2
[7,3,2]=>3
[7,3,1,1]=>2
[7,2,2,1]=>3
[7,2,1,1,1]=>1
[7,1,1,1,1,1]=>1
[6,6]=>2
[6,5,1]=>2
[6,4,2]=>3
[6,4,1,1]=>2
[6,3,3]=>3
[6,3,2,1]=>3
[6,3,1,1,1]=>1
[6,2,2,2]=>4
[6,2,2,1,1]=>1
[6,2,1,1,1,1]=>1
[6,1,1,1,1,1,1]=>0
[5,5,2]=>3
[5,5,1,1]=>2
[5,4,3]=>3
[5,4,2,1]=>3
[5,4,1,1,1]=>2
[5,3,3,1]=>3
[5,3,2,2]=>4
[5,3,2,1,1]=>2
[5,3,1,1,1,1]=>1
[5,2,2,2,1]=>4
[5,2,2,1,1,1]=>1
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>0
[4,4,4]=>3
[4,4,3,1]=>3
[4,4,2,2]=>4
[4,4,2,1,1]=>2
[4,4,1,1,1,1]=>0
[4,3,3,2]=>4
[4,3,3,1,1]=>3
[4,3,2,2,1]=>4
[4,3,2,1,1,1]=>1
[4,3,1,1,1,1,1]=>0
[4,2,2,2,2]=>5
[4,2,2,2,1,1]=>1
[4,2,2,1,1,1,1]=>0
[4,2,1,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1,1]=>0
[3,3,3,3]=>4
[3,3,3,2,1]=>4
[3,3,3,1,1,1]=>0
[3,3,2,2,2]=>5
[3,3,2,2,1,1]=>2
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>0
[3,2,2,2,2,1]=>5
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>0
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,2]=>6
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of parts of a partition that are strictly bigger than the number of ones.
This is part of the definition of Dyson's crank of a partition, see St000474Dyson's crank of a partition..
This is part of the definition of Dyson's crank of a partition, see St000474Dyson's crank of a partition..
References
[1] Andrews, G. E., Garvan, F. G. Dyson's crank of a partition MathSciNet:0929094
Code
def statistic(L): ones = list(L).count(1) return sum(1 for part in L if part > ones)
Created
Apr 19, 2016 at 10:40 by Christian Stump
Updated
Oct 29, 2017 at 21:13 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!