Identifier
Values
[2] => 2
[1,1] => -1
[3] => 3
[2,1] => 0
[1,1,1] => 1
[4] => 4
[3,1] => 1
[2,2] => -2
[2,1,1] => 0
[1,1,1,1] => -1
[5] => 5
[4,1] => 2
[3,2] => 0
[3,1,1] => -1
[2,2,1] => 0
[2,1,1,1] => 0
[1,1,1,1,1] => 1
[6] => 6
[5,1] => 3
[4,2] => 2
[4,1,1] => -2
[3,3] => -3
[3,2,1] => 0
[3,1,1,1] => 1
[2,2,2] => 2
[2,2,1,1] => 0
[2,1,1,1,1] => 0
[1,1,1,1,1,1] => -1
[7] => 7
[6,1] => 4
[5,2] => 4
[5,1,1] => -3
[4,3] => 0
[4,2,1] => 0
[4,1,1,1] => 2
[3,3,1] => -1
[3,2,2] => 0
[3,2,1,1] => 0
[3,1,1,1,1] => -1
[2,2,2,1] => 0
[2,2,1,1,1] => 0
[2,1,1,1,1,1] => 0
[1,1,1,1,1,1,1] => 1
[8] => 8
[7,1] => 5
[6,2] => 6
[6,1,1] => -4
[5,3] => 3
[5,2,1] => 0
[5,1,1,1] => 3
[4,4] => -4
[4,3,1] => 0
[4,2,2] => -2
[4,2,1,1] => 0
[4,1,1,1,1] => -2
[3,3,2] => 0
[3,3,1,1] => 1
[3,2,2,1] => 0
[3,2,1,1,1] => 0
[3,1,1,1,1,1] => 1
[2,2,2,2] => -2
[2,2,2,1,1] => 0
[2,2,1,1,1,1] => 0
[2,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1] => -1
[9] => 9
[8,1] => 6
[7,2] => 8
[7,1,1] => -5
[6,3] => 6
[6,2,1] => 0
[6,1,1,1] => 4
[5,4] => 0
[5,3,1] => 1
[5,2,2] => -4
[5,2,1,1] => 0
[5,1,1,1,1] => -3
[4,4,1] => -2
[4,3,2] => 0
[4,3,1,1] => 0
[4,2,2,1] => 0
[4,2,1,1,1] => 0
[4,1,1,1,1,1] => 2
[3,3,3] => 3
[3,3,2,1] => 0
[3,3,1,1,1] => -1
[3,2,2,2] => 0
[3,2,2,1,1] => 0
[3,2,1,1,1,1] => 0
[3,1,1,1,1,1,1] => -1
[2,2,2,2,1] => 0
[2,2,2,1,1,1] => 0
[2,2,1,1,1,1,1] => 0
[2,1,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1,1] => 1
[10] => 10
[9,1] => 7
[8,2] => 10
[8,1,1] => -6
[7,3] => 9
[7,2,1] => 0
>>> Load all 270 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The weight of a partition according to Alladi.
References
[1] Alladi, K. Partition identities involving gaps and weights MathSciNet:1401759
Code
def statistic(pi):
"""
The weight according to Alladi.
sage: r=8; RR = [pi for pi in Partitions(r) if all(pi[i] - pi[i+1] >= 2 for i in range(len(pi)-1))]
sage: sum(weight(pi) for pi in RR) == Partitions(r).cardinality()
"""
return pi[-1]*prod(pi[i] - pi[i+1] -1 for i in range(len(pi)-1))
Created
May 03, 2016 at 08:01 by Martin Rubey
Updated
May 03, 2016 at 11:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!