Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => 0
([],4) => [1,1,1,1] => [1,1,1] => 0
([(2,3)],4) => [2,1,1] => [1,1] => 0
([(0,3),(1,2)],4) => [2,2] => [2] => 1
([],5) => [1,1,1,1,1] => [1,1,1,1] => 0
([(3,4)],5) => [2,1,1,1] => [1,1,1] => 0
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 0
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 0
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => 1
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => 1
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 0
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 0
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 0
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 0
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => 0
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 0
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => -1
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 0
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 0
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 0
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 0
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 2
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => -1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 2
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => 2
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => -1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 2
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => 1
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 2
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Another weight of a partition according to Alladi.
According to Theorem 3.4 (Alladi 2012) in [1]
$$ \sum_{\pi\in GG_1(r)} w_1(\pi) $$
equals the number of partitions of $r$ whose odd parts are all distinct. $GG_1(r)$ is the set of partitions of $r$ where consecutive entries differ by at least $2$, and consecutive even entries differ by at least $4$.
According to Theorem 3.4 (Alladi 2012) in [1]
$$ \sum_{\pi\in GG_1(r)} w_1(\pi) $$
equals the number of partitions of $r$ whose odd parts are all distinct. $GG_1(r)$ is the set of partitions of $r$ where consecutive entries differ by at least $2$, and consecutive even entries differ by at least $4$.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!