Processing math: 100%

Identifier
Values
([],1) => ([],1) => [2] => [1,1] => 0
([(0,1)],2) => ([(0,1)],2) => [3] => [1,1,1] => 0
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => [4] => [1,1,1,1] => 0
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => [4,2] => [2,2,1,1] => 1
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => [5] => [1,1,1,1,1] => 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => [4,2,2,2] => [4,4,1,1] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [5,2] => [2,2,1,1,1] => 1
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => [1,1,1,1,1,1] => 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [5,2] => [2,2,1,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => [8,2,2] => [3,3,1,1,1,1,1,1] => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [5,2,2,2] => [4,4,1,1,1] => 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => [9] => [1,1,1,1,1,1,1,1,1] => 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [6,2] => [2,2,1,1,1,1] => 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [6,4] => [2,2,2,2,1,1] => 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [6,2] => [2,2,1,1,1,1] => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => [8,2,2] => [3,3,1,1,1,1,1,1] => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [6,2] => [2,2,1,1,1,1] => 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => [5,2,2,2] => [4,4,1,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => [5,3,3] => [3,3,3,1,1] => 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [5,5] => [2,2,2,2,2] => 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => [1,1,1,1,1,1,1] => 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [9] => [1,1,1,1,1,1,1,1,1] => 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => [6,2,2,2] => [4,4,1,1,1,1] => 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => [7,2] => [2,2,1,1,1,1,1] => 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => [6,3,3] => [3,3,3,1,1,1] => 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => [6,5] => [2,2,2,2,2,1] => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => [6,2,2,2] => [4,4,1,1,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [6,2,2] => [3,3,1,1,1,1] => 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => [6,2,2,2] => [4,4,1,1,1,1] => 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => [7,2] => [2,2,1,1,1,1,1] => 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => [6,5] => [2,2,2,2,2,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => [12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => [7,4] => [2,2,2,2,1,1,1] => 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => [10] => [1,1,1,1,1,1,1,1,1,1] => 0
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => [12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => [7,2] => [2,2,1,1,1,1,1] => 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => [10] => [1,1,1,1,1,1,1,1,1,1] => 0
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => [10] => [1,1,1,1,1,1,1,1,1,1] => 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => [12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [8] => [1,1,1,1,1,1,1,1] => 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => [6,3,3] => [3,3,3,1,1,1] => 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => [7,4] => [2,2,2,2,1,1,1] => 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => [7,2] => [2,2,1,1,1,1,1] => 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => [7,5] => [2,2,2,2,2,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of lower covers of a partition in dominance order.
According to [1], Corollary 2.4, the maximum number of elements one element (apparently for n2) can cover is
12(1+8n3)
and an element which covers this number of elements is given by (c+i,c,c1,,3,2,1), where 1ic+2.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
to poset
Description
Return the poset corresponding to the lattice.