Values
([],1) => ([],1) => ([],1) => 1
([],2) => ([],1) => ([],1) => 1
([(0,1)],2) => ([(0,1)],2) => ([],2) => 2
([],3) => ([],1) => ([],1) => 1
([(1,2)],3) => ([(0,1)],2) => ([],2) => 2
([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2) => 2
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([],4) => ([],1) => ([],1) => 1
([(2,3)],4) => ([(0,1)],2) => ([],2) => 2
([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => 2
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => 2
([(0,3),(1,2)],4) => ([(0,1)],2) => ([],2) => 2
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => ([],2) => 2
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([],2) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 4
([],5) => ([],1) => ([],1) => 1
([(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(1,4),(2,3)],5) => ([(0,1)],2) => ([],2) => 2
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => 5
([],6) => ([],1) => ([],1) => 1
([(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(2,5),(3,4)],6) => ([(0,1)],2) => ([],2) => 2
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => ([],2) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => ([],2) => 2
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => 2
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The (zero)-forcing number of a graph.
This is the minimal number of vertices initially coloured black, such that eventually all vertices of the graph are coloured black when using the following rule:
when $u$ is a black vertex of $G$, and exactly one neighbour $v$ of $u$ is white, then colour $v$ black.
This is the minimal number of vertices initially coloured black, such that eventually all vertices of the graph are coloured black when using the following rule:
when $u$ is a black vertex of $G$, and exactly one neighbour $v$ of $u$ is white, then colour $v$ black.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!