Identifier
Values
[1,0] => [(1,2)] => [2,1] => [1,2] => 0
[1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => [3,2,1,4] => 1
[1,1,0,0] => [(1,4),(2,3)] => [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [3,2,5,4,1,6] => 3
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [3,2,1,4,5,6] => 1
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [5,4,3,2,1,6] => 1
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [1,5,4,2,3,6] => 2
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [3,2,5,4,7,6,1,8] => 5
[1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [3,2,7,6,5,4,1,8] => 3
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => [3,2,1,4,5,6,7,8] => 1
[1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [5,4,3,2,7,6,1,8] => 3
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [5,4,3,2,1,6,7,8] => 1
[1,1,0,1,0,0,1,0] => [(1,6),(2,3),(4,5),(7,8)] => [6,3,2,5,4,1,8,7] => [7,4,3,6,5,2,1,8] => 3
[1,1,0,1,0,1,0,0] => [(1,8),(2,3),(4,5),(6,7)] => [8,3,2,5,4,7,6,1] => [1,5,4,7,6,2,3,8] => 4
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [7,6,5,4,3,2,1,8] => 1
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => 0
[1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,10),(4,9),(5,8),(6,7)] => [2,1,10,9,8,7,6,5,4,3] => [3,2,1,4,5,6,7,8,9,10] => 1
[1,1,0,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,10),(6,9),(7,8)] => [4,3,2,1,10,9,8,7,6,5] => [5,4,3,2,1,6,7,8,9,10] => 1
[1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => [6,5,4,3,2,1,10,9,8,7] => [7,6,5,4,3,2,1,8,9,10] => 1
[1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => [8,7,6,5,4,3,2,1,10,9] => [9,8,7,6,5,4,3,2,1,10] => 1
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [10,9,8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9,10] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of times a permutation switches from increasing to decreasing or decreasing to increasing.
This is the same as the number of inner peaks plus the number of inner valleys and called alternating runs in [2]
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
Lehmer code rotation
Description
Sends a permutation $\pi$ to the unique permutation $\tau$ (of the same length) such that every entry in the Lehmer code of $\tau$ is cyclically one larger than the Lehmer code of $\pi$.