Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000506: Integer partitions ⟶ ℤ
Values
['A',1] => ([],1) => [2] => [1,1] => 1
['A',2] => ([(0,2),(1,2)],3) => [3,2] => [2,2,1] => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => [4,2] => [2,2,1,1] => 4
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => [2,2,1,1,1,1] => 9
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A standard desarrangement tableau is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
A standard desarrangement tableau is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
- St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition.: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
- St000500Eigenvalues of the random-to-random operator acting on the regular representation.: Eigenvalues of the random-to-random operator acting on the regular representation.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!