Identifier
-
Mp00027:
Dyck paths
—to partition⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
St000508: Standard tableaux ⟶ ℤ
Values
[1,0,1,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,0,1,0,1,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,0,1,1,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,0,0,1,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,0,1,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,0,1,0,1,0,1,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,0,1,0,1,1,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,0,1,1,0,0,1,0] => [3,1,1] => [1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => 0
[1,0,1,1,0,1,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,0,1,1,1,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,0,0,1,0,1,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,0,0,1,1,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,0,1,0,0,1,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,0,1,0,1,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,0,1,1,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,0,0,0,1,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,0,0,1,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,0,1,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,0,1,0,1,0,1,0,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,1,0,1,0,1,1,0,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,1,0,1,1,0,0,1,0,0] => [3,1,1] => [1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => 0
[1,1,0,1,1,0,1,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,1,0,0,1,0,1,0,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,1,0,0,1,1,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,1,0,1,0,0,1,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,1,0,1,0,1,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,0,1,1,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,0,0,0,1,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,0,0,1,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,0,1,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,0,1,0,1,0,1,0,0,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,1,1,0,1,1,0,0,1,0,0,0] => [3,1,1] => [1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => 0
[1,1,1,0,1,1,0,1,0,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,1,1,0,0,1,0,1,0,0,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,1,1,0,0,1,1,0,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,1,1,0,1,0,0,1,0,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,1,1,0,1,0,1,0,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,1,0,0,0,1,0,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,1,0,0,1,0,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,1,0,1,0,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [3,1,1] => [1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => 0
[1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0] => [3,1,1] => [1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => 0
[1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,0] => [3,1,1] => [1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => 0
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0] => [1,1] => [1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => 0
[1,1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0] => [2,2,1] => [1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => 0
[1,1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0] => [3,2] => [1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => 10
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0] => [2] => [1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => 7
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1] => [1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => 0
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0] => [1] => [1,0,1,0] => [[1,3],[2,4]] => 0
[1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => 10
[1,1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,0] => [2,1,1] => [1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => 0
[1,1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0] => [2,1] => [1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => 0
[1,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0] => [3,2,1] => [1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => 0
[1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0] => [3] => [1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => 18
[1,1,1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0] => [3,1] => [1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => 10
>>> Load all 107 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Eigenvalues of the random-to-random operator acting on a simple module.
The simple module of the symmetric group indexed by a partition λ has dimension equal to the number of standard tableaux of shape λ. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape λ; this statistic gives all the eigenvalues of the operator acting on the module [1].
The simple module of the symmetric group indexed by a partition λ has dimension equal to the number of standard tableaux of shape λ. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape λ; this statistic gives all the eigenvalues of the operator acting on the module [1].
Map
to two-row standard tableau
Description
Return a standard tableau of shape (n,n) where n is the semilength of the Dyck path.
Given a Dyck path D, its image is given by recording the positions of the up-steps in the first row and the positions of the down-steps in the second row.
Given a Dyck path D, its image is given by recording the positions of the up-steps in the first row and the positions of the down-steps in the second row.
Map
to partition
Description
The cut-out partition of a Dyck path.
The partition λ associated to a Dyck path is defined to be the complementary partition inside the staircase partition (n−1,…,2,1) when cutting out D considered as a path from (0,0) to (n,n).
In other words, λi is the number of down-steps before the (n+1−i)-th up-step of D.
This map is a bijection between Dyck paths of size n and partitions inside the staircase partition (n−1,…,2,1).
The partition λ associated to a Dyck path is defined to be the complementary partition inside the staircase partition (n−1,…,2,1) when cutting out D considered as a path from (0,0) to (n,n).
In other words, λi is the number of down-steps before the (n+1−i)-th up-step of D.
This map is a bijection between Dyck paths of size n and partitions inside the staircase partition (n−1,…,2,1).
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!