Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000508: Standard tableaux ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => [[1],[2]] => 0
([],4) => [1,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,3)],4) => [2,1,1] => [1,1] => [[1],[2]] => 0
([(0,3),(1,2)],4) => [2,2] => [2] => [[1,2]] => 4
([],5) => [1,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [[1],[2]] => 0
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [[1,3],[2]] => 0
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => [[1,2]] => 4
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [[1],[2]] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => [[1,2]] => 4
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [[1],[2]] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => 2
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [[1],[2]] => 0
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [[1,3],[2]] => 0
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => [[1,2]] => 4
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [[1],[2]] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [[1],[2]] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => [[1,2,3]] => 9
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [[1],[2]] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [[1,2],[3,4]] => 4
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => [[1,2]] => 4
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [[1,3],[2]] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => [[1,2]] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => [[1,2]] => 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => [[1,2,3]] => 9
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => [[1,2]] => 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [[1],[2]] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => [[1,2,3]] => 9
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => [[1,2]] => 4
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 1
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [[1,5],[2],[3],[4]] => 0
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => 2
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [[1],[2],[3],[4]] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [[1,3],[2]] => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [[1,3,4],[2]] => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [[1,3],[2,5],[4]] => 0
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [[1,3],[2]] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [[1,2],[3,4]] => 4
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [[1,4],[2],[3]] => 2
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [[1,3],[2]] => 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [[1,3],[2]] => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [[1,3,4],[2]] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [[1,3],[2]] => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [[1],[2],[3]] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [[1],[2]] => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [[1,2],[3,4]] => 4
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => [[1,2,3]] => 9
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [[1,3,4],[2]] => 0
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => [[1,2]] => 4
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => [[1,2,3]] => 9
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Eigenvalues of the random-to-random operator acting on a simple module.
The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module [1].
The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module [1].
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!