Identifier
- St000509: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>1
[1,1]=>-1
[3]=>3
[2,1]=>0
[1,1,1]=>-3
[4]=>6
[3,1]=>2
[2,2]=>0
[2,1,1]=>-2
[1,1,1,1]=>-6
[5]=>10
[4,1]=>5
[3,2]=>2
[3,1,1]=>0
[2,2,1]=>-2
[2,1,1,1]=>-5
[1,1,1,1,1]=>-10
[6]=>15
[5,1]=>9
[4,2]=>5
[4,1,1]=>3
[3,3]=>3
[3,2,1]=>0
[3,1,1,1]=>-3
[2,2,2]=>-3
[2,2,1,1]=>-5
[2,1,1,1,1]=>-9
[1,1,1,1,1,1]=>-15
[7]=>21
[6,1]=>14
[5,2]=>9
[5,1,1]=>7
[4,3]=>6
[4,2,1]=>3
[4,1,1,1]=>0
[3,3,1]=>1
[3,2,2]=>-1
[3,2,1,1]=>-3
[3,1,1,1,1]=>-7
[2,2,2,1]=>-6
[2,2,1,1,1]=>-9
[2,1,1,1,1,1]=>-14
[1,1,1,1,1,1,1]=>-21
[8]=>28
[7,1]=>20
[6,2]=>14
[6,1,1]=>12
[5,3]=>10
[5,2,1]=>7
[5,1,1,1]=>4
[4,4]=>8
[4,3,1]=>4
[4,2,2]=>2
[4,2,1,1]=>0
[4,1,1,1,1]=>-4
[3,3,2]=>0
[3,3,1,1]=>-2
[3,2,2,1]=>-4
[3,2,1,1,1]=>-7
[3,1,1,1,1,1]=>-12
[2,2,2,2]=>-8
[2,2,2,1,1]=>-10
[2,2,1,1,1,1]=>-14
[2,1,1,1,1,1,1]=>-20
[1,1,1,1,1,1,1,1]=>-28
[9]=>36
[8,1]=>27
[7,2]=>20
[7,1,1]=>18
[6,3]=>15
[6,2,1]=>12
[6,1,1,1]=>9
[5,4]=>12
[5,3,1]=>8
[5,2,2]=>6
[5,2,1,1]=>4
[5,1,1,1,1]=>0
[4,4,1]=>6
[4,3,2]=>3
[4,3,1,1]=>1
[4,2,2,1]=>-1
[4,2,1,1,1]=>-4
[4,1,1,1,1,1]=>-9
[3,3,3]=>0
[3,3,2,1]=>-3
[3,3,1,1,1]=>-6
[3,2,2,2]=>-6
[3,2,2,1,1]=>-8
[3,2,1,1,1,1]=>-12
[3,1,1,1,1,1,1]=>-18
[2,2,2,2,1]=>-12
[2,2,2,1,1,1]=>-15
[2,2,1,1,1,1,1]=>-20
[2,1,1,1,1,1,1,1]=>-27
[1,1,1,1,1,1,1,1,1]=>-36
[10]=>45
[9,1]=>35
[8,2]=>27
[8,1,1]=>25
[7,3]=>21
[7,2,1]=>18
[7,1,1,1]=>15
[6,4]=>17
[6,3,1]=>13
[6,2,2]=>11
[6,2,1,1]=>9
[6,1,1,1,1]=>5
[5,5]=>15
[5,4,1]=>10
[5,3,2]=>7
[5,3,1,1]=>5
[5,2,2,1]=>3
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>-5
[4,4,2]=>5
[4,4,1,1]=>3
[4,3,3]=>3
[4,3,2,1]=>0
[4,3,1,1,1]=>-3
[4,2,2,2]=>-3
[4,2,2,1,1]=>-5
[4,2,1,1,1,1]=>-9
[4,1,1,1,1,1,1]=>-15
[3,3,3,1]=>-3
[3,3,2,2]=>-5
[3,3,2,1,1]=>-7
[3,3,1,1,1,1]=>-11
[3,2,2,2,1]=>-10
[3,2,2,1,1,1]=>-13
[3,2,1,1,1,1,1]=>-18
[3,1,1,1,1,1,1,1]=>-25
[2,2,2,2,2]=>-15
[2,2,2,2,1,1]=>-17
[2,2,2,1,1,1,1]=>-21
[2,2,1,1,1,1,1,1]=>-27
[2,1,1,1,1,1,1,1,1]=>-35
[1,1,1,1,1,1,1,1,1,1]=>-45
[11]=>55
[10,1]=>44
[9,2]=>35
[9,1,1]=>33
[8,3]=>28
[8,2,1]=>25
[8,1,1,1]=>22
[7,4]=>23
[7,3,1]=>19
[7,2,2]=>17
[7,2,1,1]=>15
[7,1,1,1,1]=>11
[6,5]=>20
[6,4,1]=>15
[6,3,2]=>12
[6,3,1,1]=>10
[6,2,2,1]=>8
[6,2,1,1,1]=>5
[6,1,1,1,1,1]=>0
[5,5,1]=>13
[5,4,2]=>9
[5,4,1,1]=>7
[5,3,3]=>7
[5,3,2,1]=>4
[5,3,1,1,1]=>1
[5,2,2,2]=>1
[5,2,2,1,1]=>-1
[5,2,1,1,1,1]=>-5
[5,1,1,1,1,1,1]=>-11
[4,4,3]=>5
[4,4,2,1]=>2
[4,4,1,1,1]=>-1
[4,3,3,1]=>0
[4,3,2,2]=>-2
[4,3,2,1,1]=>-4
[4,3,1,1,1,1]=>-8
[4,2,2,2,1]=>-7
[4,2,2,1,1,1]=>-10
[4,2,1,1,1,1,1]=>-15
[4,1,1,1,1,1,1,1]=>-22
[3,3,3,2]=>-5
[3,3,3,1,1]=>-7
[3,3,2,2,1]=>-9
[3,3,2,1,1,1]=>-12
[3,3,1,1,1,1,1]=>-17
[3,2,2,2,2]=>-13
[3,2,2,2,1,1]=>-15
[3,2,2,1,1,1,1]=>-19
[3,2,1,1,1,1,1,1]=>-25
[3,1,1,1,1,1,1,1,1]=>-33
[2,2,2,2,2,1]=>-20
[2,2,2,2,1,1,1]=>-23
[2,2,2,1,1,1,1,1]=>-28
[2,2,1,1,1,1,1,1,1]=>-35
[2,1,1,1,1,1,1,1,1,1]=>-44
[1,1,1,1,1,1,1,1,1,1,1]=>-55
[12]=>66
[11,1]=>54
[10,2]=>44
[10,1,1]=>42
[9,3]=>36
[9,2,1]=>33
[9,1,1,1]=>30
[8,4]=>30
[8,3,1]=>26
[8,2,2]=>24
[8,2,1,1]=>22
[8,1,1,1,1]=>18
[7,5]=>26
[7,4,1]=>21
[7,3,2]=>18
[7,3,1,1]=>16
[7,2,2,1]=>14
[7,2,1,1,1]=>11
[7,1,1,1,1,1]=>6
[6,6]=>24
[6,5,1]=>18
[6,4,2]=>14
[6,4,1,1]=>12
[6,3,3]=>12
[6,3,2,1]=>9
[6,3,1,1,1]=>6
[6,2,2,2]=>6
[6,2,2,1,1]=>4
[6,2,1,1,1,1]=>0
[6,1,1,1,1,1,1]=>-6
[5,5,2]=>12
[5,5,1,1]=>10
[5,4,3]=>9
[5,4,2,1]=>6
[5,4,1,1,1]=>3
[5,3,3,1]=>4
[5,3,2,2]=>2
[5,3,2,1,1]=>0
[5,3,1,1,1,1]=>-4
[5,2,2,2,1]=>-3
[5,2,2,1,1,1]=>-6
[5,2,1,1,1,1,1]=>-11
[5,1,1,1,1,1,1,1]=>-18
[4,4,4]=>6
[4,4,3,1]=>2
[4,4,2,2]=>0
[4,4,2,1,1]=>-2
[4,4,1,1,1,1]=>-6
[4,3,3,2]=>-2
[4,3,3,1,1]=>-4
[4,3,2,2,1]=>-6
[4,3,2,1,1,1]=>-9
[4,3,1,1,1,1,1]=>-14
[4,2,2,2,2]=>-10
[4,2,2,2,1,1]=>-12
[4,2,2,1,1,1,1]=>-16
[4,2,1,1,1,1,1,1]=>-22
[4,1,1,1,1,1,1,1,1]=>-30
[3,3,3,3]=>-6
[3,3,3,2,1]=>-9
[3,3,3,1,1,1]=>-12
[3,3,2,2,2]=>-12
[3,3,2,2,1,1]=>-14
[3,3,2,1,1,1,1]=>-18
[3,3,1,1,1,1,1,1]=>-24
[3,2,2,2,2,1]=>-18
[3,2,2,2,1,1,1]=>-21
[3,2,2,1,1,1,1,1]=>-26
[3,2,1,1,1,1,1,1,1]=>-33
[3,1,1,1,1,1,1,1,1,1]=>-42
[2,2,2,2,2,2]=>-24
[2,2,2,2,2,1,1]=>-26
[2,2,2,2,1,1,1,1]=>-30
[2,2,2,1,1,1,1,1,1]=>-36
[2,2,1,1,1,1,1,1,1,1]=>-44
[2,1,1,1,1,1,1,1,1,1,1]=>-54
[1,1,1,1,1,1,1,1,1,1,1,1]=>-66
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The diagonal index (content) of a partition.
The diagonal index of the cell at row $r$ and column $c$ of a partition is $c - r$; this is sometimes called the content of the cell. The diagonal index of a partition is the sum of the diagonal index of each cell of the partition.
The diagonal index of the cell at row $r$ and column $c$ of a partition is $c - r$; this is sometimes called the content of the cell. The diagonal index of a partition is the sum of the diagonal index of each cell of the partition.
Code
def statistic(la): return sum((j - i) for (i, j) in la.cells())
Created
May 25, 2016 at 20:28 by Franco Saliola
Updated
May 25, 2016 at 20:28 by Franco Saliola
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!