edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>2 [1,1]=>2 [3]=>2 [2,1]=>3 [1,1,1]=>5 [4]=>3 [3,1]=>3 [2,2]=>7 [2,1,1]=>7 [1,1,1,1]=>15 [5]=>2 [4,1]=>4 [3,2]=>5 [3,1,1]=>7 [2,2,1]=>12 [2,1,1,1]=>20 [1,1,1,1,1]=>52 [6]=>4 [5,1]=>3 [4,2]=>9 [4,1,1]=>9 [3,3]=>8 [3,2,1]=>10 [3,1,1,1]=>20 [2,2,2]=>31 [2,2,1,1]=>31 [2,1,1,1,1]=>67 [1,1,1,1,1,1]=>203 [7]=>2 [6,1]=>5 [5,2]=>5 [5,1,1]=>7 [4,3]=>7 [4,2,1]=>15 [4,1,1,1]=>25 [3,3,1]=>13 [3,2,2]=>19 [3,2,1,1]=>27 [3,1,1,1,1]=>67 [2,2,2,1]=>59 [2,2,1,1,1]=>97 [2,1,1,1,1,1]=>255 [1,1,1,1,1,1,1]=>877 [8]=>4 [7,1]=>3 [6,2]=>11 [6,1,1]=>11 [5,3]=>5 [5,2,1]=>10 [5,1,1,1]=>20 [4,4]=>16 [4,3,1]=>13 [4,2,2]=>38 [4,2,1,1]=>38 [4,1,1,1,1]=>82 [3,3,2]=>21 [3,3,1,1]=>33 [3,2,2,1]=>43 [3,2,1,1,1]=>87 [3,1,1,1,1,1]=>255 [2,2,2,2]=>164 [2,2,2,1,1]=>164 [2,2,1,1,1,1]=>352 [2,1,1,1,1,1,1]=>1080 [1,1,1,1,1,1,1,1]=>4140 [9]=>3 [8,1]=>5 [7,2]=>5 [7,1,1]=>7 [6,3]=>12 [6,2,1]=>18 [6,1,1,1]=>30 [5,4]=>7 [5,3,1]=>10 [5,2,2]=>19 [5,2,1,1]=>27 [5,1,1,1,1]=>67 [4,4,1]=>23 [4,3,2]=>24 [4,3,1,1]=>34 [4,2,2,1]=>71 [4,2,1,1,1]=>117 [4,1,1,1,1,1]=>307 [3,3,3]=>42 [3,3,2,1]=>46 [3,3,1,1,1]=>102 [3,2,2,2]=>90 [3,2,2,1,1]=>128 [3,2,1,1,1,1]=>322 [3,1,1,1,1,1,1]=>1080 [2,2,2,2,1]=>339 [2,2,2,1,1,1]=>549 [2,2,1,1,1,1,1]=>1439 [2,1,1,1,1,1,1,1]=>5017 [1,1,1,1,1,1,1,1,1]=>21147 [10]=>4 [9,1]=>4 [8,2]=>11 [8,1,1]=>11 [7,3]=>5 [7,2,1]=>10 [7,1,1,1]=>20 [6,4]=>15 [6,3,1]=>19 [6,2,2]=>45 [6,2,1,1]=>45 [6,1,1,1,1]=>97 [5,5]=>10 [5,4,1]=>13 [5,3,2]=>15 [5,3,1,1]=>27 [5,2,2,1]=>43 [5,2,1,1,1]=>87 [5,1,1,1,1,1]=>255 [4,4,2]=>55 [4,4,1,1]=>55 [4,3,3]=>29 [4,3,2,1]=>53 [4,3,1,1,1]=>107 [4,2,2,2]=>195 [4,2,2,1,1]=>195 [4,2,1,1,1,1]=>419 [4,1,1,1,1,1,1]=>1283 [3,3,3,1]=>73 [3,3,2,2]=>83 [3,3,2,1,1]=>135 [3,3,1,1,1,1]=>367 [3,2,2,2,1]=>223 [3,2,2,1,1,1]=>449 [3,2,1,1,1,1,1]=>1335 [3,1,1,1,1,1,1,1]=>5017 [2,2,2,2,2]=>999 [2,2,2,2,1,1]=>999 [2,2,2,1,1,1,1]=>2119 [2,2,1,1,1,1,1,1]=>6503 [2,1,1,1,1,1,1,1,1]=>25287 [1,1,1,1,1,1,1,1,1,1]=>115975 [11]=>2 [10,1]=>5 [9,2]=>7 [9,1,1]=>9 [8,3]=>9 [8,2,1]=>18 [8,1,1,1]=>30 [7,4]=>7 [7,3,1]=>10 [7,2,2]=>19 [7,2,1,1]=>27 [7,1,1,1,1]=>67 [6,5]=>9 [6,4,1]=>23 [6,3,2]=>35 [6,3,1,1]=>47 [6,2,2,1]=>83 [6,2,1,1,1]=>137 [6,1,1,1,1,1]=>359 [5,5,1]=>15 [5,4,2]=>24 [5,4,1,1]=>34 [5,3,3]=>21 [5,3,2,1]=>37 [5,3,1,1,1]=>87 [5,2,2,2]=>90 [5,2,2,1,1]=>128 [5,2,1,1,1,1]=>322 [5,1,1,1,1,1,1]=>1080 [4,4,3]=>39 [4,4,2,1]=>98 [4,4,1,1,1]=>162 [4,3,3,1]=>59 [4,3,2,2]=>109 [4,3,2,1,1]=>155 [4,3,1,1,1,1]=>389 [4,2,2,2,1]=>398 [4,2,2,1,1,1]=>646 [4,2,1,1,1,1,1]=>1694 [4,1,1,1,1,1,1,1]=>5894 [3,3,3,2]=>115 [3,3,3,1,1]=>195 [3,3,2,2,1]=>207 [3,3,2,1,1,1]=>469 [3,3,1,1,1,1,1]=>1491 [3,2,2,2,2]=>503 [3,2,2,2,1,1]=>713 [3,2,2,1,1,1,1]=>1791 [3,2,1,1,1,1,1,1]=>6097 [3,1,1,1,1,1,1,1,1]=>25287 [2,2,2,2,2,1]=>2210 [2,2,2,2,1,1,1]=>3530 [2,2,2,1,1,1,1,1]=>9170 [2,2,1,1,1,1,1,1,1]=>32058 [2,1,1,1,1,1,1,1,1,1]=>137122 [1,1,1,1,1,1,1,1,1,1,1]=>678570 [12]=>6 [11,1]=>3 [10,2]=>11 [10,1,1]=>11 [9,3]=>10 [9,2,1]=>13 [9,1,1,1]=>25 [8,4]=>19 [8,3,1]=>16 [8,2,2]=>45 [8,2,1,1]=>45 [8,1,1,1,1]=>97 [7,5]=>5 [7,4,1]=>13 [7,3,2]=>15 [7,3,1,1]=>27 [7,2,2,1]=>43 [7,2,1,1,1]=>87 [7,1,1,1,1,1]=>255 [6,6]=>28 [6,5,1]=>16 [6,4,2]=>56 [6,4,1,1]=>56 [6,3,3]=>58 [6,3,2,1]=>72 [6,3,1,1,1]=>142 [6,2,2,2]=>226 [6,2,2,1,1]=>226 [6,2,1,1,1,1]=>486 [6,1,1,1,1,1,1]=>1486 [5,5,2]=>25 [5,5,1,1]=>37 [5,4,3]=>20 [5,4,2,1]=>53 [5,4,1,1,1]=>107 [5,3,3,1]=>46 [5,3,2,2]=>62 [5,3,2,1,1]=>114 [5,3,1,1,1,1]=>322 [5,2,2,2,1]=>223 [5,2,2,1,1,1]=>449 [5,2,1,1,1,1,1]=>1335 [5,1,1,1,1,1,1,1]=>5017 [4,4,4]=>111 [4,4,3,1]=>78 [4,4,2,2]=>261 [4,4,2,1,1]=>261 [4,4,1,1,1,1]=>561 [4,3,3,2]=>104 [4,3,3,1,1]=>168 [4,3,2,2,1]=>266 [4,3,2,1,1,1]=>536 [4,3,1,1,1,1,1]=>1590 [4,2,2,2,2]=>1163 [4,2,2,2,1,1]=>1163 [4,2,2,1,1,1,1]=>2471 [4,2,1,1,1,1,1,1]=>7583 [4,1,1,1,1,1,1,1,1]=>29427 [3,3,3,3]=>268 [3,3,3,2,1]=>268 [3,3,3,1,1,1]=>634 [3,3,2,2,2]=>406 [3,3,2,2,1,1]=>670 [3,3,2,1,1,1,1]=>1858 [3,3,1,1,1,1,1,1]=>6706 [3,2,2,2,2,1]=>1338 [3,2,2,2,1,1,1]=>2668 [3,2,2,1,1,1,1,1]=>7942 [3,2,1,1,1,1,1,1,1]=>30304 [3,1,1,1,1,1,1,1,1,1]=>137122 [2,2,2,2,2,2]=>6841 [2,2,2,2,2,1,1]=>6841 [2,2,2,2,1,1,1,1]=>14325 [2,2,2,1,1,1,1,1,1]=>43693 [2,2,1,1,1,1,1,1,1,1]=>170689 [2,1,1,1,1,1,1,1,1,1,1]=>794545 [1,1,1,1,1,1,1,1,1,1,1,1]=>4213597
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of invariant set partitions when acting with a permutation of given cycle type.
References
[1] Bergeron, F., Labelle, G., Leroux, P. Combinatorial species and tree-like structures MathSciNet:1629341
Code
def statistic(la):
    Partitionspecies = species.PartitionSpecies().cycle_index_series()
    return Partitionspecies.count(la)

Created
May 26, 2016 at 21:32 by Martin Rubey
Updated
May 26, 2016 at 21:32 by Martin Rubey