Identifier
- St000515: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>2
[1,1]=>2
[3]=>2
[2,1]=>3
[1,1,1]=>5
[4]=>3
[3,1]=>3
[2,2]=>7
[2,1,1]=>7
[1,1,1,1]=>15
[5]=>2
[4,1]=>4
[3,2]=>5
[3,1,1]=>7
[2,2,1]=>12
[2,1,1,1]=>20
[1,1,1,1,1]=>52
[6]=>4
[5,1]=>3
[4,2]=>9
[4,1,1]=>9
[3,3]=>8
[3,2,1]=>10
[3,1,1,1]=>20
[2,2,2]=>31
[2,2,1,1]=>31
[2,1,1,1,1]=>67
[1,1,1,1,1,1]=>203
[7]=>2
[6,1]=>5
[5,2]=>5
[5,1,1]=>7
[4,3]=>7
[4,2,1]=>15
[4,1,1,1]=>25
[3,3,1]=>13
[3,2,2]=>19
[3,2,1,1]=>27
[3,1,1,1,1]=>67
[2,2,2,1]=>59
[2,2,1,1,1]=>97
[2,1,1,1,1,1]=>255
[1,1,1,1,1,1,1]=>877
[8]=>4
[7,1]=>3
[6,2]=>11
[6,1,1]=>11
[5,3]=>5
[5,2,1]=>10
[5,1,1,1]=>20
[4,4]=>16
[4,3,1]=>13
[4,2,2]=>38
[4,2,1,1]=>38
[4,1,1,1,1]=>82
[3,3,2]=>21
[3,3,1,1]=>33
[3,2,2,1]=>43
[3,2,1,1,1]=>87
[3,1,1,1,1,1]=>255
[2,2,2,2]=>164
[2,2,2,1,1]=>164
[2,2,1,1,1,1]=>352
[2,1,1,1,1,1,1]=>1080
[1,1,1,1,1,1,1,1]=>4140
[9]=>3
[8,1]=>5
[7,2]=>5
[7,1,1]=>7
[6,3]=>12
[6,2,1]=>18
[6,1,1,1]=>30
[5,4]=>7
[5,3,1]=>10
[5,2,2]=>19
[5,2,1,1]=>27
[5,1,1,1,1]=>67
[4,4,1]=>23
[4,3,2]=>24
[4,3,1,1]=>34
[4,2,2,1]=>71
[4,2,1,1,1]=>117
[4,1,1,1,1,1]=>307
[3,3,3]=>42
[3,3,2,1]=>46
[3,3,1,1,1]=>102
[3,2,2,2]=>90
[3,2,2,1,1]=>128
[3,2,1,1,1,1]=>322
[3,1,1,1,1,1,1]=>1080
[2,2,2,2,1]=>339
[2,2,2,1,1,1]=>549
[2,2,1,1,1,1,1]=>1439
[2,1,1,1,1,1,1,1]=>5017
[1,1,1,1,1,1,1,1,1]=>21147
[10]=>4
[9,1]=>4
[8,2]=>11
[8,1,1]=>11
[7,3]=>5
[7,2,1]=>10
[7,1,1,1]=>20
[6,4]=>15
[6,3,1]=>19
[6,2,2]=>45
[6,2,1,1]=>45
[6,1,1,1,1]=>97
[5,5]=>10
[5,4,1]=>13
[5,3,2]=>15
[5,3,1,1]=>27
[5,2,2,1]=>43
[5,2,1,1,1]=>87
[5,1,1,1,1,1]=>255
[4,4,2]=>55
[4,4,1,1]=>55
[4,3,3]=>29
[4,3,2,1]=>53
[4,3,1,1,1]=>107
[4,2,2,2]=>195
[4,2,2,1,1]=>195
[4,2,1,1,1,1]=>419
[4,1,1,1,1,1,1]=>1283
[3,3,3,1]=>73
[3,3,2,2]=>83
[3,3,2,1,1]=>135
[3,3,1,1,1,1]=>367
[3,2,2,2,1]=>223
[3,2,2,1,1,1]=>449
[3,2,1,1,1,1,1]=>1335
[3,1,1,1,1,1,1,1]=>5017
[2,2,2,2,2]=>999
[2,2,2,2,1,1]=>999
[2,2,2,1,1,1,1]=>2119
[2,2,1,1,1,1,1,1]=>6503
[2,1,1,1,1,1,1,1,1]=>25287
[1,1,1,1,1,1,1,1,1,1]=>115975
[11]=>2
[10,1]=>5
[9,2]=>7
[9,1,1]=>9
[8,3]=>9
[8,2,1]=>18
[8,1,1,1]=>30
[7,4]=>7
[7,3,1]=>10
[7,2,2]=>19
[7,2,1,1]=>27
[7,1,1,1,1]=>67
[6,5]=>9
[6,4,1]=>23
[6,3,2]=>35
[6,3,1,1]=>47
[6,2,2,1]=>83
[6,2,1,1,1]=>137
[6,1,1,1,1,1]=>359
[5,5,1]=>15
[5,4,2]=>24
[5,4,1,1]=>34
[5,3,3]=>21
[5,3,2,1]=>37
[5,3,1,1,1]=>87
[5,2,2,2]=>90
[5,2,2,1,1]=>128
[5,2,1,1,1,1]=>322
[5,1,1,1,1,1,1]=>1080
[4,4,3]=>39
[4,4,2,1]=>98
[4,4,1,1,1]=>162
[4,3,3,1]=>59
[4,3,2,2]=>109
[4,3,2,1,1]=>155
[4,3,1,1,1,1]=>389
[4,2,2,2,1]=>398
[4,2,2,1,1,1]=>646
[4,2,1,1,1,1,1]=>1694
[4,1,1,1,1,1,1,1]=>5894
[3,3,3,2]=>115
[3,3,3,1,1]=>195
[3,3,2,2,1]=>207
[3,3,2,1,1,1]=>469
[3,3,1,1,1,1,1]=>1491
[3,2,2,2,2]=>503
[3,2,2,2,1,1]=>713
[3,2,2,1,1,1,1]=>1791
[3,2,1,1,1,1,1,1]=>6097
[3,1,1,1,1,1,1,1,1]=>25287
[2,2,2,2,2,1]=>2210
[2,2,2,2,1,1,1]=>3530
[2,2,2,1,1,1,1,1]=>9170
[2,2,1,1,1,1,1,1,1]=>32058
[2,1,1,1,1,1,1,1,1,1]=>137122
[1,1,1,1,1,1,1,1,1,1,1]=>678570
[12]=>6
[11,1]=>3
[10,2]=>11
[10,1,1]=>11
[9,3]=>10
[9,2,1]=>13
[9,1,1,1]=>25
[8,4]=>19
[8,3,1]=>16
[8,2,2]=>45
[8,2,1,1]=>45
[8,1,1,1,1]=>97
[7,5]=>5
[7,4,1]=>13
[7,3,2]=>15
[7,3,1,1]=>27
[7,2,2,1]=>43
[7,2,1,1,1]=>87
[7,1,1,1,1,1]=>255
[6,6]=>28
[6,5,1]=>16
[6,4,2]=>56
[6,4,1,1]=>56
[6,3,3]=>58
[6,3,2,1]=>72
[6,3,1,1,1]=>142
[6,2,2,2]=>226
[6,2,2,1,1]=>226
[6,2,1,1,1,1]=>486
[6,1,1,1,1,1,1]=>1486
[5,5,2]=>25
[5,5,1,1]=>37
[5,4,3]=>20
[5,4,2,1]=>53
[5,4,1,1,1]=>107
[5,3,3,1]=>46
[5,3,2,2]=>62
[5,3,2,1,1]=>114
[5,3,1,1,1,1]=>322
[5,2,2,2,1]=>223
[5,2,2,1,1,1]=>449
[5,2,1,1,1,1,1]=>1335
[5,1,1,1,1,1,1,1]=>5017
[4,4,4]=>111
[4,4,3,1]=>78
[4,4,2,2]=>261
[4,4,2,1,1]=>261
[4,4,1,1,1,1]=>561
[4,3,3,2]=>104
[4,3,3,1,1]=>168
[4,3,2,2,1]=>266
[4,3,2,1,1,1]=>536
[4,3,1,1,1,1,1]=>1590
[4,2,2,2,2]=>1163
[4,2,2,2,1,1]=>1163
[4,2,2,1,1,1,1]=>2471
[4,2,1,1,1,1,1,1]=>7583
[4,1,1,1,1,1,1,1,1]=>29427
[3,3,3,3]=>268
[3,3,3,2,1]=>268
[3,3,3,1,1,1]=>634
[3,3,2,2,2]=>406
[3,3,2,2,1,1]=>670
[3,3,2,1,1,1,1]=>1858
[3,3,1,1,1,1,1,1]=>6706
[3,2,2,2,2,1]=>1338
[3,2,2,2,1,1,1]=>2668
[3,2,2,1,1,1,1,1]=>7942
[3,2,1,1,1,1,1,1,1]=>30304
[3,1,1,1,1,1,1,1,1,1]=>137122
[2,2,2,2,2,2]=>6841
[2,2,2,2,2,1,1]=>6841
[2,2,2,2,1,1,1,1]=>14325
[2,2,2,1,1,1,1,1,1]=>43693
[2,2,1,1,1,1,1,1,1,1]=>170689
[2,1,1,1,1,1,1,1,1,1,1]=>794545
[1,1,1,1,1,1,1,1,1,1,1,1]=>4213597
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of invariant set partitions when acting with a permutation of given cycle type.
References
[1] Bergeron, F., Labelle, G., Leroux, P. Combinatorial species and tree-like structures MathSciNet:1629341
Code
def statistic(la): Partitionspecies = species.PartitionSpecies().cycle_index_series() return Partitionspecies.count(la)
Created
May 26, 2016 at 21:32 by Martin Rubey
Updated
May 26, 2016 at 21:32 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!