Identifier
- St000518: Binary words ⟶ ℤ
Values
0 => 2
1 => 2
00 => 3
01 => 4
10 => 4
11 => 3
000 => 4
001 => 6
010 => 7
011 => 6
100 => 6
101 => 7
110 => 6
111 => 4
0000 => 5
0001 => 8
0010 => 10
0011 => 9
0100 => 10
0101 => 12
0110 => 11
0111 => 8
1000 => 8
1001 => 11
1010 => 12
1011 => 10
1100 => 9
1101 => 10
1110 => 8
1111 => 5
00000 => 6
00001 => 10
00010 => 13
00011 => 12
00100 => 14
00101 => 17
00110 => 16
00111 => 12
01000 => 13
01001 => 18
01010 => 20
01011 => 17
01100 => 16
01101 => 18
01110 => 15
01111 => 10
10000 => 10
10001 => 15
10010 => 18
10011 => 16
10100 => 17
10101 => 20
10110 => 18
10111 => 13
11000 => 12
11001 => 16
11010 => 17
11011 => 14
11100 => 12
11101 => 13
11110 => 10
11111 => 6
000000 => 7
000001 => 12
000010 => 16
000011 => 15
000100 => 18
000101 => 22
000110 => 21
000111 => 16
001000 => 18
001001 => 25
001010 => 28
001011 => 24
001100 => 23
001101 => 26
001110 => 22
001111 => 15
010000 => 16
010001 => 24
010010 => 29
010011 => 26
010100 => 28
010101 => 33
010110 => 30
010111 => 22
011000 => 21
011001 => 28
011010 => 30
011011 => 25
011100 => 22
011101 => 24
011110 => 19
011111 => 12
100000 => 12
100001 => 19
100010 => 24
100011 => 22
100100 => 25
100101 => 30
100110 => 28
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct subsequences in a binary word.
In contrast to the subword complexity St000294The number of distinct factors of a binary word. this is the cardinality of the set of all subsequences of not necessarily consecutive letters.
In contrast to the subword complexity St000294The number of distinct factors of a binary word. this is the cardinality of the set of all subsequences of not necessarily consecutive letters.
References
[1] Flaxman, A., Harrow, A. W., Sorkin, G. B. Strings with maximally many distinct subsequences and substrings MathSciNet:2034422
[2] Elzinga, C., Rahmann, S., Wang, H. Algorithms for subsequence combinatorics MathSciNet:2473913
[2] Elzinga, C., Rahmann, S., Wang, H. Algorithms for subsequence combinatorics MathSciNet:2473913
Code
def statistic(w):
return len(Set(Subwords(w)))
Created
Jun 01, 2016 at 09:30 by Martin Rubey
Updated
Jun 01, 2016 at 09:30 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!