Identifier
- St000519: Binary words ⟶ ℤ
Values
0 => 0
1 => 0
00 => 1
01 => 1
10 => 1
11 => 1
000 => 2
001 => 2
010 => 2
011 => 2
100 => 2
101 => 2
110 => 2
111 => 2
0000 => 3
0001 => 3
0010 => 2
0011 => 2
0100 => 2
0101 => 3
0110 => 2
0111 => 3
1000 => 3
1001 => 2
1010 => 3
1011 => 2
1100 => 2
1101 => 2
1110 => 3
1111 => 3
00000 => 4
00001 => 4
00010 => 3
00011 => 3
00100 => 3
00101 => 3
00110 => 2
00111 => 3
01000 => 3
01001 => 3
01010 => 4
01011 => 3
01100 => 2
01101 => 3
01110 => 3
01111 => 4
10000 => 4
10001 => 3
10010 => 3
10011 => 2
10100 => 3
10101 => 4
10110 => 3
10111 => 3
11000 => 3
11001 => 2
11010 => 3
11011 => 3
11100 => 3
11101 => 3
11110 => 4
11111 => 4
000000 => 5
000001 => 5
000010 => 4
000011 => 4
000100 => 3
000101 => 3
000110 => 3
000111 => 3
001000 => 3
001001 => 4
001010 => 4
001011 => 3
001100 => 3
001101 => 3
001110 => 3
001111 => 4
010000 => 4
010001 => 3
010010 => 4
010011 => 3
010100 => 4
010101 => 5
010110 => 3
010111 => 3
011000 => 3
011001 => 3
011010 => 3
011011 => 4
011100 => 3
011101 => 3
011110 => 4
011111 => 5
100000 => 5
100001 => 4
100010 => 3
100011 => 3
100100 => 4
100101 => 3
100110 => 3
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest length of a factor maximising the subword complexity.
Let $p_w(n)$ be the number of distinct factors of length $n$. Then the statistic is the largest $n$ such that $p_w(n)$ is maximal:
$$ H_w = \max\{n: p_w(n)\text{ is maximal}\} $$
A related statistic is the number of distinct factors of arbitrary length, also known as subword complexity, St000294The number of distinct factors of a binary word..
Let $p_w(n)$ be the number of distinct factors of length $n$. Then the statistic is the largest $n$ such that $p_w(n)$ is maximal:
$$ H_w = \max\{n: p_w(n)\text{ is maximal}\} $$
A related statistic is the number of distinct factors of arbitrary length, also known as subword complexity, St000294The number of distinct factors of a binary word..
References
[1] Berstel, J. 50ieme Seminaire Lotharingien de Combinatoire, www-igm.univ-mlv.fr/~berstel/Exposes/2003-03-23Lotharingien.pdf
Code
def statistic(w):
m = max(len(w.factor_set(n=n)) for n in range(len(w)))
return max(n for n in range(len(w)) if len(w.factor_set(n=n)) == m)
Created
Jun 01, 2016 at 09:54 by Martin Rubey
Updated
Jun 07, 2016 at 19:55 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!