Identifier
-
Mp00120:
Dyck paths
—Lalanne-Kreweras involution⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000527: Posets ⟶ ℤ
Values
[1,0] => [1,0] => [1,1,0,0] => ([],2) => 2
[1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => ([],3) => 3
[1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => ([(1,2)],3) => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => ([],4) => 4
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => ([(1,2),(1,3)],4) => 3
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => ([(1,3),(2,3)],4) => 3
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => ([(2,3)],4) => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3)],4) => 2
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => ([],5) => 5
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => ([(1,2),(1,3),(1,4)],5) => 4
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => ([(2,3),(2,4)],5) => 4
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 3
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => ([(1,4),(2,4),(3,4)],5) => 4
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(3,4)],5) => 3
[1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => ([(2,4),(3,4)],5) => 4
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => ([(3,4)],5) => 4
[1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => ([(0,4),(1,2),(1,3),(1,4)],5) => 3
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => ([(0,4),(1,4),(2,3),(2,4)],5) => 3
[1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => ([(1,4),(2,3),(2,4)],5) => 3
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => ([],6) => 6
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => ([(1,2),(1,3),(1,4),(1,5)],6) => 5
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => ([(2,3),(2,4),(2,5)],6) => 5
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 4
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => 3
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => ([(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => ([(3,4),(3,5)],6) => 5
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 4
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => ([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => 3
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => ([(1,5),(2,5),(3,5),(4,5)],6) => 5
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 4
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => 3
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => ([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => 4
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => ([(2,5),(3,5),(4,5)],6) => 5
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => 4
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => ([(3,5),(4,5)],6) => 5
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => ([(4,5)],6) => 5
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => ([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 4
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => ([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => 4
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => ([(1,5),(2,3),(2,4),(2,5)],6) => 4
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => 3
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 3
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => ([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => 4
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => ([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => ([(1,5),(2,5),(3,4),(3,5)],6) => 4
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => ([(2,5),(3,4),(3,5)],6) => 4
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => 3
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => 3
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 3
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => ([],7) => 7
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => ([(1,2),(1,3),(1,4),(1,5),(1,6)],7) => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => ([(2,3),(2,4),(2,5),(2,6)],7) => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => ([(3,4),(3,5),(3,6)],7) => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,1,0,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,5),(4,6)],7) => 4
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0] => ([(3,5),(3,6),(4,5),(4,6)],7) => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => ([(4,5),(4,6)],7) => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 4
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,1,1,0,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,1,0,1,0,0,0,0] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => ([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5)],7) => 3
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 6
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => 5
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => 5
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,4)],7) => 4
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => 4
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,1,1,0,0,1,0,0,0,0] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(5,6)],7) => 5
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) => 3
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => ([(2,6),(3,6),(4,6),(5,6)],7) => 6
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,1,0,0] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) => 5
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(5,6)],7) => 5
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => ([(3,6),(4,6),(5,6)],7) => 6
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(5,6)],7) => 5
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => ([(4,6),(5,6)],7) => 6
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => ([(5,6)],7) => 6
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7) => 5
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 5
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => ([(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 5
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,1,0,0,0,0] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,1,1,0,0,0,0] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6)],7) => 5
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,1,1,0,0,0,0] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4
>>> Load all 138 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The width of the poset.
This is the size of the poset's longest antichain, also called Dilworth number.
This is the size of the poset's longest antichain, also called Dilworth number.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let D be a Dyck path of semilength n, regarded as a subdiagonal path from (0,0) to (n,n), and let \boldsymbol{m}_i be the x-coordinate of the i-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to D has elements \{1,\dots,n\} with i < j if j < \boldsymbol{m}_i.
Let D be a Dyck path of semilength n, regarded as a subdiagonal path from (0,0) to (n,n), and let \boldsymbol{m}_i be the x-coordinate of the i-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to D has elements \{1,\dots,n\} with i < j if j < \boldsymbol{m}_i.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!