Identifier
-
Mp00090:
Permutations
—cycle-as-one-line notation⟶
Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000528: Posets ⟶ ℤ (values match St000080The rank of the poset.)
Values
[1] => [1] => ([],1) => 1
[1,2] => [1,2] => ([(0,1)],2) => 2
[2,1] => [1,2] => ([(0,1)],2) => 2
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,3,2] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[2,1,3] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,2,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,3,4,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[3,4,2,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[4,1,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[4,1,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 4
[4,2,3,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 4
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,3,4,5,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,1,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,1,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,1,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,1,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,4,1,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,4,5,7,6] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,4,6,7,5] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,5,4,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,5,4,7,6] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,5,6,4,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,5,6,7,4] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,3,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,3,5,7,6] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,3,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,3,6,7,5] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,5,3,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,5,3,7,6] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,5,6,3,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,4,5,6,7,3] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,3,2,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,3,2,4,5,7,6] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,3,2,4,6,5,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,3,2,4,6,7,5] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
>>> Load all 145 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The height of a poset.
This equals the rank of the poset St000080The rank of the poset. plus one.
This equals the rank of the poset St000080The rank of the poset. plus one.
Map
cycle-as-one-line notation
Description
Return the permutation obtained by concatenating the cycles of a permutation, each written with minimal element first, sorted by minimal element.
Map
pattern poset
Description
The pattern poset of a permutation.
This is the poset of all non-empty permutations that occur in the given permutation as a pattern, ordered by pattern containment.
This is the poset of all non-empty permutations that occur in the given permutation as a pattern, ordered by pattern containment.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!