Identifier
Values
[[1],[]] => ([],1) => [1] => 1
[[2],[]] => ([(0,1)],2) => [1] => 1
[[1,1],[]] => ([(0,1)],2) => [1] => 1
[[2,1],[1]] => ([],2) => [2] => 2
[[3],[]] => ([(0,2),(2,1)],3) => [1] => 1
[[2,1],[]] => ([(0,1),(0,2)],3) => [2] => 2
[[3,1],[1]] => ([(1,2)],3) => [3] => 3
[[2,2],[1]] => ([(0,2),(1,2)],3) => [2] => 2
[[3,2],[2]] => ([(1,2)],3) => [3] => 3
[[1,1,1],[]] => ([(0,2),(2,1)],3) => [1] => 1
[[2,2,1],[1,1]] => ([(1,2)],3) => [3] => 3
[[2,1,1],[1]] => ([(1,2)],3) => [3] => 3
[[3,2,1],[2,1]] => ([],3) => [3,3] => 6
[[4],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 1
[[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 3
[[4,1],[1]] => ([(1,2),(2,3)],4) => [4] => 4
[[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => [2] => 2
[[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 4
[[4,2],[2]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 3
[[3,2,1],[1,1]] => ([(1,2),(1,3)],4) => [8] => 8
[[3,1,1],[1]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[4,2,1],[2,1]] => ([(2,3)],4) => [4,4,4] => 24
[[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => [3] => 3
[[4,3],[3]] => ([(1,2),(2,3)],4) => [4] => 4
[[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 4
[[3,3,1],[2,1]] => ([(1,3),(2,3)],4) => [8] => 8
[[3,2,1],[2]] => ([(1,2),(1,3)],4) => [8] => 8
[[4,3,1],[3,1]] => ([(2,3)],4) => [4,4,4] => 24
[[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => [3] => 3
[[3,3,2],[2,2]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[3,2,2],[2,1]] => ([(1,3),(2,3)],4) => [8] => 8
[[4,3,2],[3,2]] => ([(2,3)],4) => [4,4,4] => 24
[[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 1
[[2,2,2,1],[1,1,1]] => ([(1,2),(2,3)],4) => [4] => 4
[[2,2,1,1],[1,1]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[3,3,2,1],[2,2,1]] => ([(2,3)],4) => [4,4,4] => 24
[[2,1,1,1],[1]] => ([(1,2),(2,3)],4) => [4] => 4
[[3,2,2,1],[2,1,1]] => ([(2,3)],4) => [4,4,4] => 24
[[3,2,1,1],[2,1]] => ([(2,3)],4) => [4,4,4] => 24
[[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 1
[[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 4
[[5,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 4
[[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 16
[[5,2],[2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => 6
[[4,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[3,3],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 4
[[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 16
[[5,3],[3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 4
[[3,3,1],[1,1]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 20
[[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => [4,4,3] => 18
[[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 4
[[3,1,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 4
[[5,4],[4]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => [4,4,3] => 18
[[2,2,2],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 4
[[3,2,2],[2]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 20
[[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 16
[[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => 6
[[4,4,3],[3,3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 16
[[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 4
[[3,3,3,2],[2,2,2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 1
[[2,2,2,2,1],[1,1,1,1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[2,2,2,1,1],[1,1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 20
[[2,1,1,1,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 1
[[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 5
[[6,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 16
[[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 20
[[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 4
[[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 20
[[4,4],[2]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 16
[[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 4
[[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 16
[[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 5
[[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 5
[[6,5],[5]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 20
[[2,2,2,2],[1,1]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 16
[[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 20
[[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 5
[[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 1
[[2,2,2,2,2,1],[1,1,1,1,1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[2,1,1,1,1,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 1
[[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 6
[[7,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
[[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 6
[[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 6
[[7,6],[6]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
[[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 6
[[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 1
[[2,2,2,2,2,2,1],[1,1,1,1,1,1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
>>> Load all 102 entries. <<<
[[2,1,1,1,1,1,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The leading coefficient of the rook polynomial of an integer partition.
Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.