Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000533: Integer partitions ⟶ ℤ
Values
['A',1] => ([],1) => [2] => 1
['A',2] => ([(0,2),(1,2)],3) => [3,2] => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => [4,2] => 2
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!