edit this statistic or download as text // json
Identifier
Values
=>
[1]=>1 [1,2]=>2 [2,1]=>1 [1,2,3]=>6 [1,3,2]=>4 [2,1,3]=>4 [2,3,1]=>2 [3,1,2]=>2 [3,2,1]=>1 [1,2,3,4]=>20 [1,2,4,3]=>12 [1,3,2,4]=>16 [1,3,4,2]=>10 [1,4,2,3]=>10 [1,4,3,2]=>4 [2,1,3,4]=>12 [2,1,4,3]=>4 [2,3,1,4]=>10 [2,3,4,1]=>6 [2,4,1,3]=>8 [2,4,3,1]=>4 [3,1,2,4]=>10 [3,1,4,2]=>8 [3,2,1,4]=>4 [3,2,4,1]=>4 [3,4,1,2]=>4 [3,4,2,1]=>2 [4,1,2,3]=>6 [4,1,3,2]=>4 [4,2,1,3]=>4 [4,2,3,1]=>2 [4,3,1,2]=>2 [4,3,2,1]=>1 [1,2,3,4,5]=>66 [1,2,3,5,4]=>36 [1,2,4,3,5]=>48 [1,2,4,5,3]=>31 [1,2,5,3,4]=>31 [1,2,5,4,3]=>12 [1,3,2,4,5]=>48 [1,3,2,5,4]=>16 [1,3,4,2,5]=>48 [1,3,4,5,2]=>30 [1,3,5,2,4]=>32 [1,3,5,4,2]=>16 [1,4,2,3,5]=>48 [1,4,2,5,3]=>32 [1,4,3,2,5]=>16 [1,4,3,5,2]=>16 [1,4,5,2,3]=>25 [1,4,5,3,2]=>10 [1,5,2,3,4]=>30 [1,5,2,4,3]=>16 [1,5,3,2,4]=>16 [1,5,3,4,2]=>8 [1,5,4,2,3]=>10 [1,5,4,3,2]=>4 [2,1,3,4,5]=>36 [2,1,3,5,4]=>16 [2,1,4,3,5]=>16 [2,1,4,5,3]=>10 [2,1,5,3,4]=>10 [2,1,5,4,3]=>4 [2,3,1,4,5]=>31 [2,3,1,5,4]=>10 [2,3,4,1,5]=>30 [2,3,4,5,1]=>20 [2,3,5,1,4]=>24 [2,3,5,4,1]=>12 [2,4,1,3,5]=>32 [2,4,1,5,3]=>16 [2,4,3,1,5]=>16 [2,4,3,5,1]=>16 [2,4,5,1,3]=>20 [2,4,5,3,1]=>10 [2,5,1,3,4]=>24 [2,5,1,4,3]=>8 [2,5,3,1,4]=>16 [2,5,3,4,1]=>10 [2,5,4,1,3]=>8 [2,5,4,3,1]=>4 [3,1,2,4,5]=>31 [3,1,2,5,4]=>10 [3,1,4,2,5]=>32 [3,1,4,5,2]=>24 [3,1,5,2,4]=>16 [3,1,5,4,2]=>8 [3,2,1,4,5]=>12 [3,2,1,5,4]=>4 [3,2,4,1,5]=>16 [3,2,4,5,1]=>12 [3,2,5,1,4]=>8 [3,2,5,4,1]=>4 [3,4,1,2,5]=>25 [3,4,1,5,2]=>20 [3,4,2,1,5]=>10 [3,4,2,5,1]=>10 [3,4,5,1,2]=>12 [3,4,5,2,1]=>6 [3,5,1,2,4]=>20 [3,5,1,4,2]=>16 [3,5,2,1,4]=>8 [3,5,2,4,1]=>8 [3,5,4,1,2]=>8 [3,5,4,2,1]=>4 [4,1,2,3,5]=>30 [4,1,2,5,3]=>24 [4,1,3,2,5]=>16 [4,1,3,5,2]=>16 [4,1,5,2,3]=>20 [4,1,5,3,2]=>8 [4,2,1,3,5]=>16 [4,2,1,5,3]=>8 [4,2,3,1,5]=>8 [4,2,3,5,1]=>10 [4,2,5,1,3]=>16 [4,2,5,3,1]=>8 [4,3,1,2,5]=>10 [4,3,1,5,2]=>8 [4,3,2,1,5]=>4 [4,3,2,5,1]=>4 [4,3,5,1,2]=>8 [4,3,5,2,1]=>4 [4,5,1,2,3]=>12 [4,5,1,3,2]=>8 [4,5,2,1,3]=>8 [4,5,2,3,1]=>4 [4,5,3,1,2]=>4 [4,5,3,2,1]=>2 [5,1,2,3,4]=>20 [5,1,2,4,3]=>12 [5,1,3,2,4]=>16 [5,1,3,4,2]=>10 [5,1,4,2,3]=>10 [5,1,4,3,2]=>4 [5,2,1,3,4]=>12 [5,2,1,4,3]=>4 [5,2,3,1,4]=>10 [5,2,3,4,1]=>6 [5,2,4,1,3]=>8 [5,2,4,3,1]=>4 [5,3,1,2,4]=>10 [5,3,1,4,2]=>8 [5,3,2,1,4]=>4 [5,3,2,4,1]=>4 [5,3,4,1,2]=>4 [5,3,4,2,1]=>2 [5,4,1,2,3]=>6 [5,4,1,3,2]=>4 [5,4,2,1,3]=>4 [5,4,2,3,1]=>2 [5,4,3,1,2]=>2 [5,4,3,2,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of parabolic double cosets with minimal element being the given permutation.
For $w \in S_n$, this is
$$\big| W_I \tau W_J\ :\ \tau \in S_n,\ I,J \subseteq S,\ w = \min\{W_I \tau W_J\}\big|$$
where $S$ is the set of simple transpositions, $W_K$ is the parabolic subgroup generated by $K \subseteq S$, and $\min\{W_I \tau W_J\}$ is the unique minimal element in weak order in the double coset $W_I \tau W_J$.
[1] contains a combinatorial description of these parabolic double cosets which can be used to compute this statistic.
References
[1] S. Billey, M. Konvalinka, T.K. Petersen, W. Slofstra, B. Tenner, "Parabolic double cosets in Coxeter groups", to appear in Discrete Mathematics and Theoretical Computer Science, preprint 2016
[2] Number of distinct parabolic double cosets of the symmetric group S_n. OEIS:A260700
Created
Jul 12, 2016 at 13:51 by Sara Billey
Updated
Dec 30, 2016 at 10:32 by Christian Stump