Identifier
Values
([],1) => ([],1) => ([(0,1)],2) => 2
([],2) => ([],1) => ([(0,1)],2) => 2
([(0,1)],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([],3) => ([],1) => ([(0,1)],2) => 2
([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,2),(1,2)],3) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([],4) => ([],1) => ([(0,1)],2) => 2
([(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,3),(1,3),(2,3)],4) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([(0,2),(0,3),(1,2),(1,3)],4) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([],5) => ([],1) => ([(0,1)],2) => 2
([(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,4),(1,4),(2,4),(3,4)],5) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([],6) => ([],1) => ([(0,1)],2) => 2
([(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([],7) => ([],1) => ([(0,1)],2) => 2
([(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.