Identifier
            
            - 
Mp00037:
    Graphs
    
—to partition of connected components⟶
Integer partitions
		
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤ 
                Values
            
            ([],3) => [1,1,1] => [1,1] => 0
([],4) => [1,1,1,1] => [1,1,1] => 0
([(2,3)],4) => [2,1,1] => [1,1] => 0
([(0,3),(1,2)],4) => [2,2] => [2] => 1
([],5) => [1,1,1,1,1] => [1,1,1,1] => 0
([(3,4)],5) => [2,1,1,1] => [1,1,1] => 0
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 0
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 1
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => 1
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => 1
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 0
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 0
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 0
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 1
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => 0
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 1
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 1
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 0
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 0
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 1
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 1
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 2
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => 0
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 3
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 3
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 3
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => 3
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 0
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 3
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 3
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => 3
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 3
>>> Load all 216 entries. <<<
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                Description
            The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
	$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
Map
            to partition of connected components
	    
	Description
            Return the partition of the sizes of the connected components of the graph.
	Map
            first row removal
	    
	Description
            Removes the first entry of an integer partition
	searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!