Identifier
- St000618: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>0
[1,1,1]=>1
[4]=>1
[3,1]=>1
[2,2]=>2
[2,1,1]=>1
[1,1,1,1]=>1
[5]=>1
[4,1]=>0
[3,2]=>1
[3,1,1]=>2
[2,2,1]=>1
[2,1,1,1]=>0
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>1
[4,2]=>3
[4,1,1]=>2
[3,3]=>3
[3,2,1]=>0
[3,1,1,1]=>2
[2,2,2]=>3
[2,2,1,1]=>3
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>0
[5,2]=>2
[5,1,1]=>3
[4,3]=>0
[4,2,1]=>1
[4,1,1,1]=>0
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>1
[3,1,1,1,1]=>3
[2,2,2,1]=>0
[2,2,1,1,1]=>2
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>1
[6,2]=>4
[6,1,1]=>3
[5,3]=>4
[5,2,1]=>0
[5,1,1,1]=>3
[4,4]=>6
[4,3,1]=>2
[4,2,2]=>8
[4,2,1,1]=>6
[4,1,1,1,1]=>3
[3,3,2]=>6
[3,3,1,1]=>8
[3,2,2,1]=>2
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>3
[2,2,2,2]=>6
[2,2,2,1,1]=>4
[2,2,1,1,1,1]=>4
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>0
[7,2]=>3
[7,1,1]=>4
[6,3]=>0
[6,2,1]=>1
[6,1,1,1]=>0
[5,4]=>2
[5,3,1]=>6
[5,2,2]=>8
[5,2,1,1]=>3
[5,1,1,1,1]=>6
[4,4,1]=>4
[4,3,2]=>0
[4,3,1,1]=>0
[4,2,2,1]=>0
[4,2,1,1,1]=>3
[4,1,1,1,1,1]=>0
[3,3,3]=>6
[3,3,2,1]=>0
[3,3,1,1,1]=>8
[3,2,2,2]=>4
[3,2,2,1,1]=>6
[3,2,1,1,1,1]=>1
[3,1,1,1,1,1,1]=>4
[2,2,2,2,1]=>2
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>1
[8,2]=>5
[8,1,1]=>4
[7,3]=>5
[7,2,1]=>0
[7,1,1,1]=>4
[6,4]=>10
[6,3,1]=>5
[6,2,2]=>15
[6,2,1,1]=>10
[6,1,1,1,1]=>6
[5,5]=>10
[5,4,1]=>0
[5,3,2]=>10
[5,3,1,1]=>15
[5,2,2,1]=>5
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>6
[4,4,2]=>20
[4,4,1,1]=>20
[4,3,3]=>10
[4,3,2,1]=>0
[4,3,1,1,1]=>5
[4,2,2,2]=>20
[4,2,2,1,1]=>15
[4,2,1,1,1,1]=>10
[4,1,1,1,1,1,1]=>4
[3,3,3,1]=>10
[3,3,2,2]=>20
[3,3,2,1,1]=>10
[3,3,1,1,1,1]=>15
[3,2,2,2,1]=>0
[3,2,2,1,1,1]=>5
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>4
[2,2,2,2,2]=>10
[2,2,2,2,1,1]=>10
[2,2,2,1,1,1,1]=>5
[2,2,1,1,1,1,1,1]=>5
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>1
[10,1]=>0
[9,2]=>4
[9,1,1]=>5
[8,3]=>0
[8,2,1]=>1
[8,1,1,1]=>0
[7,4]=>5
[7,3,1]=>10
[7,2,2]=>15
[7,2,1,1]=>6
[7,1,1,1,1]=>10
[6,5]=>0
[6,4,1]=>5
[6,3,2]=>0
[6,3,1,1]=>0
[6,2,2,1]=>0
[6,2,1,1,1]=>4
[6,1,1,1,1,1]=>0
[5,5,1]=>10
[5,4,2]=>10
[5,4,1,1]=>5
[5,3,3]=>20
[5,3,2,1]=>0
[5,3,1,1,1]=>20
[5,2,2,2]=>15
[5,2,2,1,1]=>20
[5,2,1,1,1,1]=>4
[5,1,1,1,1,1,1]=>10
[4,4,3]=>10
[4,4,2,1]=>0
[4,4,1,1,1]=>15
[4,3,3,1]=>0
[4,3,2,2]=>0
[4,3,2,1,1]=>0
[4,3,1,1,1,1]=>0
[4,2,2,2,1]=>5
[4,2,2,1,1,1]=>0
[4,2,1,1,1,1,1]=>6
[4,1,1,1,1,1,1,1]=>0
[3,3,3,2]=>10
[3,3,3,1,1]=>20
[3,3,2,2,1]=>10
[3,3,2,1,1,1]=>0
[3,3,1,1,1,1,1]=>15
[3,2,2,2,2]=>10
[3,2,2,2,1,1]=>5
[3,2,2,1,1,1,1]=>10
[3,2,1,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1,1]=>5
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>5
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>4
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>1
[11,1]=>1
[10,2]=>6
[10,1,1]=>5
[9,3]=>6
[9,2,1]=>0
[9,1,1,1]=>5
[8,4]=>15
[8,3,1]=>9
[8,2,2]=>24
[8,2,1,1]=>15
[8,1,1,1,1]=>10
[7,5]=>15
[7,4,1]=>0
[7,3,2]=>15
[7,3,1,1]=>24
[7,2,2,1]=>9
[7,2,1,1,1]=>0
[7,1,1,1,1,1]=>10
[6,6]=>20
[6,5,1]=>5
[6,4,2]=>45
[6,4,1,1]=>40
[6,3,3]=>30
[6,3,2,1]=>0
[6,3,1,1,1]=>16
[6,2,2,2]=>45
[6,2,2,1,1]=>36
[6,2,1,1,1,1]=>20
[6,1,1,1,1,1,1]=>10
[5,5,2]=>40
[5,5,1,1]=>45
[5,4,3]=>0
[5,4,2,1]=>5
[5,4,1,1,1]=>0
[5,3,3,1]=>30
[5,3,2,2]=>45
[5,3,2,1,1]=>20
[5,3,1,1,1,1]=>36
[5,2,2,2,1]=>0
[5,2,2,1,1,1]=>16
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>10
[4,4,4]=>30
[4,4,3,1]=>30
[4,4,2,2]=>80
[4,4,2,1,1]=>45
[4,4,1,1,1,1]=>45
[4,3,3,2]=>30
[4,3,3,1,1]=>30
[4,3,2,2,1]=>5
[4,3,2,1,1,1]=>0
[4,3,1,1,1,1,1]=>9
[4,2,2,2,2]=>45
[4,2,2,2,1,1]=>40
[4,2,2,1,1,1,1]=>24
[4,2,1,1,1,1,1,1]=>15
[4,1,1,1,1,1,1,1,1]=>5
[3,3,3,3]=>30
[3,3,3,2,1]=>0
[3,3,3,1,1,1]=>30
[3,3,2,2,2]=>40
[3,3,2,2,1,1]=>45
[3,3,2,1,1,1,1]=>15
[3,3,1,1,1,1,1,1]=>24
[3,2,2,2,2,1]=>5
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>9
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>5
[2,2,2,2,2,2]=>20
[2,2,2,2,2,1,1]=>15
[2,2,2,2,1,1,1,1]=>15
[2,2,2,1,1,1,1,1,1]=>6
[2,2,1,1,1,1,1,1,1,1]=>6
[2,1,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of self-evacuating tableaux of given shape.
This is the same as the number of standard domino tableaux of the given shape.
This is the same as the number of standard domino tableaux of the given shape.
References
[1] Stembridge, J. R. Canonical bases and self-evacuating tableaux MathSciNet:1387685
Code
def statistic_alt(la): chi = SymmetricGroupRepresentation(la) r = abs(ZZ(chi.to_character()(Permutation(range(la.size(),0,-1))))) assert r==statistic(la) return r def statistic(la): n = la.size() la = la + [0]*(n-len(la)) E_la = sorted([la[j] + n-j-1 for j in range(n) if is_even(la[j] + n-j-1)], reverse=True) rE = len(E_la) la_e = [ZZ(E_la[i]/2-rE+i+1) for i in range(rE)] O_la = sorted([la[j] + n-j-2 for j in range(n) if is_even(la[j] +n-j-2)], reverse=True) rO = len(O_la) la_o = [ZZ(O_la[i]/2-rO+i+1) for i in range(rO)] if abs(rE - rO)<=1: return (binomial(n//2, sum(la_e))* StandardTableaux(la_e).cardinality()* StandardTableaux(la_o).cardinality()) else: return 0
Created
Sep 26, 2016 at 23:00 by Martin Rubey
Updated
Sep 26, 2016 at 23:00 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!