edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>0 [1,1]=>1 [3]=>1 [2,1]=>1 [1,1,1]=>1 [4]=>0 [3,1]=>2 [2,2]=>1 [2,1,1]=>2 [1,1,1,1]=>1 [5]=>1 [4,1]=>2 [3,2]=>3 [3,1,1]=>4 [2,2,1]=>3 [2,1,1,1]=>3 [1,1,1,1,1]=>1 [6]=>0 [5,1]=>3 [4,2]=>5 [4,1,1]=>6 [3,3]=>3 [3,2,1]=>10 [3,1,1,1]=>7 [2,2,2]=>3 [2,2,1,1]=>6 [2,1,1,1,1]=>4 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>3 [5,2]=>8 [5,1,1]=>9 [4,3]=>8 [4,2,1]=>21 [4,1,1,1]=>13 [3,3,1]=>13 [3,2,2]=>13 [3,2,1,1]=>23 [3,1,1,1,1]=>11 [2,2,2,1]=>9 [2,2,1,1,1]=>10 [2,1,1,1,1,1]=>5 [1,1,1,1,1,1,1]=>1 [8]=>0 [7,1]=>4 [6,2]=>11 [6,1,1]=>12 [5,3]=>16 [5,2,1]=>38 [5,1,1,1]=>22 [4,4]=>8 [4,3,1]=>42 [4,2,2]=>34 [4,2,1,1]=>57 [4,1,1,1,1]=>24 [3,3,2]=>26 [3,3,1,1]=>36 [3,2,2,1]=>45 [3,2,1,1,1]=>44 [3,1,1,1,1,1]=>16 [2,2,2,2]=>9 [2,2,2,1,1]=>19 [2,2,1,1,1,1]=>15 [2,1,1,1,1,1,1]=>6 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>4 [7,2]=>15 [7,1,1]=>16 [6,3]=>27 [6,2,1]=>61 [6,1,1,1]=>34 [5,4]=>24 [5,3,1]=>96 [5,2,2]=>72 [5,2,1,1]=>117 [5,1,1,1,1]=>46 [4,4,1]=>50 [4,3,2]=>102 [4,3,1,1]=>135 [4,2,2,1]=>136 [4,2,1,1,1]=>125 [4,1,1,1,1,1]=>40 [3,3,3]=>26 [3,3,2,1]=>107 [3,3,1,1,1]=>80 [3,2,2,2]=>54 [3,2,2,1,1]=>108 [3,2,1,1,1,1]=>75 [3,1,1,1,1,1,1]=>22 [2,2,2,2,1]=>28 [2,2,2,1,1,1]=>34 [2,2,1,1,1,1,1]=>21 [2,1,1,1,1,1,1,1]=>7 [1,1,1,1,1,1,1,1,1]=>1 [10]=>0 [9,1]=>5 [8,2]=>19 [8,1,1]=>20 [7,3]=>42 [7,2,1]=>92 [7,1,1,1]=>50 [6,4]=>51 [6,3,1]=>184 [6,2,2]=>133 [6,2,1,1]=>212 [6,1,1,1,1]=>80 [5,5]=>24 [5,4,1]=>170 [5,3,2]=>270 [5,3,1,1]=>348 [5,2,2,1]=>325 [5,2,1,1,1]=>288 [5,1,1,1,1,1]=>86 [4,4,2]=>152 [4,4,1,1]=>185 [4,3,3]=>128 [4,3,2,1]=>480 [4,3,1,1,1]=>340 [4,2,2,2]=>190 [4,2,2,1,1]=>369 [4,2,1,1,1,1]=>240 [4,1,1,1,1,1,1]=>62 [3,3,3,1]=>133 [3,3,2,2]=>161 [3,3,2,1,1]=>295 [3,3,1,1,1,1]=>155 [3,2,2,2,1]=>190 [3,2,2,1,1,1]=>217 [3,2,1,1,1,1,1]=>118 [3,1,1,1,1,1,1,1]=>29 [2,2,2,2,2]=>28 [2,2,2,2,1,1]=>62 [2,2,2,1,1,1,1]=>55 [2,2,1,1,1,1,1,1]=>28 [2,1,1,1,1,1,1,1,1]=>8 [1,1,1,1,1,1,1,1,1,1]=>1 [11]=>1 [10,1]=>5 [9,2]=>24 [9,1,1]=>25 [8,3]=>61 [8,2,1]=>131 [8,1,1,1]=>70 [7,4]=>93 [7,3,1]=>318 [7,2,2]=>225 [7,2,1,1]=>354 [7,1,1,1,1]=>130 [6,5]=>75 [6,4,1]=>405 [6,3,2]=>587 [6,3,1,1]=>744 [6,2,2,1]=>670 [6,2,1,1,1]=>580 [6,1,1,1,1,1]=>166 [5,5,1]=>194 [5,4,2]=>592 [5,4,1,1]=>703 [5,3,3]=>398 [5,3,2,1]=>1423 [5,3,1,1,1]=>976 [5,2,2,2]=>515 [5,2,2,1,1]=>982 [5,2,1,1,1,1]=>614 [5,1,1,1,1,1,1]=>148 [4,4,3]=>280 [4,4,2,1]=>817 [4,4,1,1,1]=>525 [4,3,3,1]=>741 [4,3,2,2]=>831 [4,3,2,1,1]=>1484 [4,3,1,1,1,1]=>735 [4,2,2,2,1]=>749 [4,2,2,1,1,1]=>826 [4,2,1,1,1,1,1]=>420 [4,1,1,1,1,1,1,1]=>91 [3,3,3,2]=>294 [3,3,3,1,1]=>428 [3,3,2,2,1]=>646 [3,3,2,1,1,1]=>667 [3,3,1,1,1,1,1]=>273 [3,2,2,2,2]=>218 [3,2,2,2,1,1]=>469 [3,2,2,1,1,1,1]=>390 [3,2,1,1,1,1,1,1]=>175 [3,1,1,1,1,1,1,1,1]=>37 [2,2,2,2,2,1]=>90 [2,2,2,2,1,1,1]=>117 [2,2,2,1,1,1,1,1]=>83 [2,2,1,1,1,1,1,1,1]=>36 [2,1,1,1,1,1,1,1,1,1]=>9 [1,1,1,1,1,1,1,1,1,1,1]=>1 [12]=>0 [11,1]=>6 [10,2]=>29 [10,1,1]=>30 [9,3]=>85 [9,2,1]=>180 [9,1,1,1]=>95 [8,4]=>154 [8,3,1]=>510 [8,2,2]=>356 [8,2,1,1]=>555 [8,1,1,1,1]=>200 [7,5]=>168 [7,4,1]=>816 [7,3,2]=>1130 [7,3,1,1]=>1416 [7,2,2,1]=>1249 [7,2,1,1,1]=>1064 [7,1,1,1,1,1]=>296 [6,6]=>75 [6,5,1]=>674 [6,4,2]=>1584 [6,4,1,1]=>1852 [6,3,3]=>985 [6,3,2,1]=>3424 [6,3,1,1,1]=>2300 [6,2,2,2]=>1185 [6,2,2,1,1]=>2232 [6,2,1,1,1,1]=>1360 [6,1,1,1,1,1,1]=>314 [5,5,2]=>786 [5,5,1,1]=>897 [5,4,3]=>1270 [5,4,2,1]=>3535 [5,4,1,1,1]=>2204 [5,3,3,1]=>2562 [5,3,2,2]=>2769 [5,3,2,1,1]=>4865 [5,3,1,1,1,1]=>2325 [5,2,2,2,1]=>2246 [5,2,2,1,1,1]=>2422 [5,2,1,1,1,1,1]=>1182 [5,1,1,1,1,1,1,1]=>239 [4,4,4]=>280 [4,4,3,1]=>1838 [4,4,2,2]=>1648 [4,4,2,1,1]=>2826 [4,4,1,1,1,1]=>1260 [4,3,3,2]=>1866 [4,3,3,1,1]=>2653 [4,3,2,2,1]=>3710 [4,3,2,1,1,1]=>3712 [4,3,1,1,1,1,1]=>1428 [4,2,2,2,2]=>967 [4,2,2,2,1,1]=>2044 [4,2,2,1,1,1,1]=>1636 [4,2,1,1,1,1,1,1]=>686 [4,1,1,1,1,1,1,1,1]=>128 [3,3,3,3]=>294 [3,3,3,2,1]=>1368 [3,3,3,1,1,1]=>1095 [3,3,2,2,2]=>864 [3,3,2,2,1,1]=>1782 [3,3,2,1,1,1,1]=>1330 [3,3,1,1,1,1,1,1]=>448 [3,2,2,2,2,1]=>777 [3,2,2,2,1,1,1]=>976 [3,2,2,1,1,1,1,1]=>648 [3,2,1,1,1,1,1,1,1]=>248 [3,1,1,1,1,1,1,1,1,1]=>46 [2,2,2,2,2,2]=>90 [2,2,2,2,2,1,1]=>207 [2,2,2,2,1,1,1,1]=>200 [2,2,2,1,1,1,1,1,1]=>119 [2,2,1,1,1,1,1,1,1,1]=>45 [2,1,1,1,1,1,1,1,1,1,1]=>10 [1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd.
To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is odd.
The case of an even minimum is St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even..
Code
def statistic(L):
    n = sum(L)
    return sum( 1 for SYT in StandardTableaux(L) if is_odd(min( SYT.standard_descents() + [n] )) )

Created
Oct 12, 2016 at 15:26 by Christian Stump
Updated
Oct 12, 2016 at 15:34 by Christian Stump