Identifier
- St000626: Binary words ⟶ ℤ
Values
0 => 1
1 => 1
00 => 1
01 => 2
10 => 2
11 => 1
000 => 1
001 => 3
010 => 2
011 => 3
100 => 3
101 => 2
110 => 3
111 => 1
0000 => 1
0001 => 4
0010 => 3
0011 => 4
0100 => 3
0101 => 2
0110 => 3
0111 => 4
1000 => 4
1001 => 3
1010 => 2
1011 => 3
1100 => 4
1101 => 3
1110 => 4
1111 => 1
00000 => 1
00001 => 5
00010 => 4
00011 => 5
00100 => 3
00101 => 5
00110 => 4
00111 => 5
01000 => 4
01001 => 3
01010 => 2
01011 => 5
01100 => 4
01101 => 3
01110 => 4
01111 => 5
10000 => 5
10001 => 4
10010 => 3
10011 => 4
10100 => 5
10101 => 2
10110 => 3
10111 => 4
11000 => 5
11001 => 4
11010 => 5
11011 => 3
11100 => 5
11101 => 4
11110 => 5
11111 => 1
000000 => 1
000001 => 6
000010 => 5
000011 => 6
000100 => 4
000101 => 6
000110 => 5
000111 => 6
001000 => 4
001001 => 3
001010 => 5
001011 => 6
001100 => 4
001101 => 6
001110 => 5
001111 => 6
010000 => 5
010001 => 4
010010 => 3
010011 => 6
010100 => 5
010101 => 2
010110 => 5
010111 => 6
011000 => 5
011001 => 4
011010 => 5
011011 => 3
011100 => 5
011101 => 4
011110 => 5
011111 => 6
100000 => 6
100001 => 5
100010 => 4
100011 => 5
100100 => 3
100101 => 5
100110 => 4
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimal period of a binary word.
This is the smallest natural number $p$ such that $w_i=w_{i+p}$ for all $i\in\{1,\dots,|w|-p\}$.
This is the smallest natural number $p$ such that $w_i=w_{i+p}$ for all $i\in\{1,\dots,|w|-p\}$.
Code
def statistic(w):
return w.minimal_period()
Created
Oct 16, 2016 at 22:07 by Martin Rubey
Updated
Oct 16, 2016 at 22:07 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!