Identifier
- St000630: Binary words ⟶ ℤ
Values
0 => 1
1 => 1
00 => 1
01 => 2
10 => 2
11 => 1
000 => 1
001 => 2
010 => 1
011 => 2
100 => 2
101 => 1
110 => 2
111 => 1
0000 => 1
0001 => 2
0010 => 2
0011 => 2
0100 => 2
0101 => 2
0110 => 1
0111 => 2
1000 => 2
1001 => 1
1010 => 2
1011 => 2
1100 => 2
1101 => 2
1110 => 2
1111 => 1
00000 => 1
00001 => 2
00010 => 2
00011 => 2
00100 => 1
00101 => 2
00110 => 2
00111 => 2
01000 => 2
01001 => 2
01010 => 1
01011 => 2
01100 => 2
01101 => 2
01110 => 1
01111 => 2
10000 => 2
10001 => 1
10010 => 2
10011 => 2
10100 => 2
10101 => 1
10110 => 2
10111 => 2
11000 => 2
11001 => 2
11010 => 2
11011 => 1
11100 => 2
11101 => 2
11110 => 2
11111 => 1
000000 => 1
000001 => 2
000010 => 2
000011 => 2
000100 => 2
000101 => 2
000110 => 2
000111 => 2
001000 => 2
001001 => 2
001010 => 2
001011 => 3
001100 => 1
001101 => 3
001110 => 2
001111 => 2
010000 => 2
010001 => 2
010010 => 1
010011 => 3
010100 => 2
010101 => 2
010110 => 3
010111 => 2
011000 => 2
011001 => 3
011010 => 3
011011 => 2
011100 => 2
011101 => 2
011110 => 1
011111 => 2
100000 => 2
100001 => 1
100010 => 2
100011 => 2
100100 => 2
100101 => 3
100110 => 3
>>> Load all 1605 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of the shortest palindromic decomposition of a binary word.
A palindromic decomposition (paldec for short) of a word $w=a_1,\dots,a_n$ is any list of factors $p_1,\dots,p_k$ such that $w=p_1\dots p_k$ and each $p_i$ is a palindrome, i.e. coincides with itself read backwards.
A palindromic decomposition (paldec for short) of a word $w=a_1,\dots,a_n$ is any list of factors $p_1,\dots,p_k$ such that $w=p_1\dots p_k$ and each $p_i$ is a palindrome, i.e. coincides with itself read backwards.
References
[1] მამუკა ჯიბლაძე Combinatorics of palindromic decompositions MathOverflow:201205
[2] Ravsky, A. On the palindromic decomposition of binary words arXiv:1004.1278
[2] Ravsky, A. On the palindromic decomposition of binary words arXiv:1004.1278
Code
def statistic(w):
return min(len(p) for p in paldecs(w))
def paldecs(w):
"""
Return all distinct palindromic decompositions of w.
sage: w = Word([1,1])
sage: paldecs(w)
[[word: 1, word: 1], [word: 11]]
sage: w = Word([1,0,1])
sage: paldecs(w)
[[word: 1, word: 0, word: 1], [word: 101]]
sage: w = Word([1,0,1,0,0,1])
sage: paldecs(w)
[[word: 1, word: 0, word: 1, word: 0, word: 0, word: 1],
[word: 1, word: 0, word: 1, word: 00, word: 1],
[word: 1, word: 0, word: 1001],
[word: 1, word: 010, word: 0, word: 1],
[word: 101, word: 0, word: 0, word: 1],
[word: 101, word: 00, word: 1]]
sage: w = Word("referee")
sage: paldecs(w)
[[word: r, word: e, word: f, word: e, word: r, word: e, word: e],
[word: r, word: e, word: f, word: e, word: r, word: ee],
[word: r, word: e, word: f, word: ere, word: e],
[word: r, word: efe, word: r, word: e, word: e],
[word: r, word: efe, word: r, word: ee],
[word: refer, word: e, word: e],
[word: refer, word: ee]]
"""
if len(w) == 0:
return [[]]
P1 = w.palindrome_prefixes()
result = []
for p1 in P1:
l = len(p1)
if l > 0:
P2 = paldecs(w[l:])
for p2 in P2:
result.append([p1] + p2)
return result
Created
Oct 16, 2016 at 21:19 by Martin Rubey
Updated
Dec 30, 2017 at 22:39 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!