Identifier
-
Mp00120:
Dyck paths
—Lalanne-Kreweras involution⟶
Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000632: Posets ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => ([],1) => 0
[1,0,1,0] => [1,1,0,0] => [1,1,0,0] => ([(0,1)],2) => 0
[1,1,0,0] => [1,0,1,0] => [1,0,1,0] => ([(0,1)],2) => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => 0
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 0
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 0
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
>>> Load all 199 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The jump number of the poset.
A jump in a linear extension e1,…,en of a poset P is a pair (ei,ei+1) so that ei+1 does not cover ei in P. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
A jump in a linear extension e1,…,en of a poset P is a pair (ei,ei+1) so that ei+1 does not cover ei in P. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
bounce path
Description
Sends a Dyck path D of length 2n to its bounce path.
This path is formed by starting at the endpoint (n,n) of D and travelling west until encountering the first vertical step of D, then south until hitting the diagonal, then west again to hit D, etc. until the point (0,0) is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint (n,n) of D and travelling west until encountering the first vertical step of D, then south until hitting the diagonal, then west again to hit D, etc. until the point (0,0) is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
This map returns the cell poset of γ(D). In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
This map returns the cell poset of γ(D). In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!