Identifier
Values
[[1,2]] => 0 => ([(0,1)],2) => 0
[[1],[2]] => 1 => ([(0,1)],2) => 0
[[1,2,3]] => 00 => ([(0,2),(2,1)],3) => 0
[[1,3],[2]] => 10 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[1,2],[3]] => 01 => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[[1],[2],[3]] => 11 => ([(0,2),(2,1)],3) => 0
[[1,2,3,4]] => 000 => ([(0,3),(2,1),(3,2)],4) => 0
[[1,3,4],[2]] => 100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[[1,2,4],[3]] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[[1,2,3],[4]] => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[[1,3],[2,4]] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[[1,2],[3,4]] => 010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[[1,4],[2],[3]] => 110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[[1,3],[2],[4]] => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 2
[[1,2],[3],[4]] => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[[1],[2],[3],[4]] => 111 => ([(0,3),(2,1),(3,2)],4) => 0
[[1,2,3,4,5]] => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[1],[2],[3],[4],[5]] => 1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[1,2,3,4,5,6]] => 00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[[1],[2],[3],[4],[5],[6]] => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[[1,2,3,4,5,6,7]] => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
[[1],[2],[3],[4],[5],[6],[7]] => 111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The jump number of the poset.
A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Map
descent word
Description
The descent word of a standard Young tableau.
For a standard Young tableau of size $n$ we set $w_i=1$ if $i+1$ is in a lower row than $i$, and $0$ otherwise, for $1\leq i < n$.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.