edit this statistic or download as text // json
Identifier
Values
([],2) => 4
([(0,1)],2) => 3
([],3) => 27
([(1,2)],3) => 12
([(0,1),(0,2)],3) => 11
([(0,2),(2,1)],3) => 10
([(0,2),(1,2)],3) => 11
([],4) => 256
([(2,3)],4) => 80
([(1,2),(1,3)],4) => 48
([(0,1),(0,2),(0,3)],4) => 67
([(0,2),(0,3),(3,1)],4) => 40
([(0,1),(0,2),(1,3),(2,3)],4) => 36
([(1,2),(2,3)],4) => 44
([(0,3),(3,1),(3,2)],4) => 40
([(1,3),(2,3)],4) => 48
([(0,3),(1,3),(3,2)],4) => 40
([(0,3),(1,3),(2,3)],4) => 67
([(0,3),(1,2)],4) => 36
([(0,3),(1,2),(1,3)],4) => 31
([(0,2),(0,3),(1,2),(1,3)],4) => 36
([(0,3),(2,1),(3,2)],4) => 35
([(0,3),(1,2),(2,3)],4) => 40
([],5) => 3125
([(3,4)],5) => 750
([(2,3),(2,4)],5) => 325
([(1,2),(1,3),(1,4)],5) => 340
([(0,1),(0,2),(0,3),(0,4)],5) => 629
([(0,2),(0,3),(0,4),(4,1)],5) => 265
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => 167
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 178
([(1,3),(1,4),(4,2)],5) => 205
([(0,3),(0,4),(4,1),(4,2)],5) => 221
([(1,2),(1,3),(2,4),(3,4)],5) => 185
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 133
([(0,3),(0,4),(3,2),(4,1)],5) => 141
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => 135
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => 133
([(2,3),(3,4)],5) => 300
([(1,4),(4,2),(4,3)],5) => 205
([(0,4),(4,1),(4,2),(4,3)],5) => 262
([(2,4),(3,4)],5) => 325
([(1,4),(2,4),(4,3)],5) => 205
([(0,4),(1,4),(4,2),(4,3)],5) => 145
([(1,4),(2,4),(3,4)],5) => 340
([(0,4),(1,4),(2,4),(4,3)],5) => 262
([(0,4),(1,4),(2,4),(3,4)],5) => 629
([(0,4),(1,4),(2,3)],5) => 128
([(0,4),(1,3),(2,3),(2,4)],5) => 99
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 145
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 197
([(0,4),(1,4),(2,3),(4,2)],5) => 147
([(0,4),(1,3),(2,3),(3,4)],5) => 221
([(0,4),(1,4),(2,3),(2,4)],5) => 151
([(0,4),(1,4),(2,3),(3,4)],5) => 265
([(1,4),(2,3)],5) => 245
([(1,4),(2,3),(2,4)],5) => 160
([(0,4),(1,2),(1,4),(2,3)],5) => 105
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => 135
([(1,3),(1,4),(2,3),(2,4)],5) => 185
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => 130
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => 133
([(0,4),(1,2),(1,4),(4,3)],5) => 129
([(0,4),(1,2),(1,3)],5) => 128
([(0,4),(1,2),(1,3),(1,4)],5) => 151
([(0,2),(0,4),(3,1),(4,3)],5) => 155
([(0,4),(1,2),(1,3),(3,4)],5) => 128
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 136
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 167
([(0,3),(0,4),(1,2),(1,4)],5) => 99
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 145
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => 197
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 109
([(0,3),(1,2),(1,4),(3,4)],5) => 105
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => 130
([(1,4),(3,2),(4,3)],5) => 180
([(0,3),(3,4),(4,1),(4,2)],5) => 147
([(1,4),(2,3),(3,4)],5) => 205
([(0,4),(1,2),(2,4),(4,3)],5) => 154
([(0,3),(1,4),(4,2)],5) => 126
([(0,4),(3,2),(4,1),(4,3)],5) => 154
([(0,4),(1,2),(2,3),(2,4)],5) => 129
([(0,4),(2,3),(3,1),(4,2)],5) => 126
([(0,3),(1,2),(2,4),(3,4)],5) => 141
([(0,4),(1,2),(2,3),(3,4)],5) => 155
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 133
([],6) => 46656
([(4,5)],6) => 9072
([(3,4),(3,5)],6) => 3024
([(2,3),(2,4),(2,5)],6) => 2484
([(1,2),(1,3),(1,4),(1,5)],6) => 3780
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => 7781
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 2620
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => 1231
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) => 1004
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1430
([(1,3),(1,4),(1,5),(5,2)],6) => 1596
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 1867
([(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 1008
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 1074
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 693
>>> Load all 404 entries. <<<
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) => 579
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => 490
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 533
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 586
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) => 611
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 650
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => 680
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => 1053
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => 868
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6) => 783
([(2,3),(2,4),(4,5)],6) => 1512
([(1,4),(1,5),(5,2),(5,3)],6) => 1332
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 1976
([(2,3),(2,4),(3,5),(4,5)],6) => 1368
([(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 804
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => 517
([(1,4),(1,5),(4,3),(5,2)],6) => 852
([(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 816
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 804
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => 509
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 477
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => 533
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => 801
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => 901
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 652
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6) => 745
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 824
([(3,4),(4,5)],6) => 2808
([(2,3),(3,4),(3,5)],6) => 1512
([(1,5),(5,2),(5,3),(5,4)],6) => 1578
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => 2558
([(2,3),(3,5),(5,4)],6) => 1332
([(1,4),(4,5),(5,2),(5,3)],6) => 888
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => 1005
([(3,5),(4,5)],6) => 3024
([(2,5),(3,5),(5,4)],6) => 1512
([(1,5),(2,5),(5,3),(5,4)],6) => 876
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => 874
([(2,5),(3,5),(4,5)],6) => 2484
([(1,5),(2,5),(3,5),(5,4)],6) => 1578
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => 874
([(1,5),(2,5),(3,5),(4,5)],6) => 3780
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => 2558
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 7781
([(0,5),(1,5),(2,5),(3,4)],6) => 760
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => 1005
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => 1976
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => 1291
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2620
([(1,5),(2,5),(3,4)],6) => 918
([(1,5),(2,4),(3,4),(3,5)],6) => 600
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) => 406
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => 652
([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 876
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6) => 472
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 745
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1188
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 704
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 824
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 650
([(1,5),(2,5),(3,4),(5,3)],6) => 888
([(1,5),(2,4),(3,4),(4,5)],6) => 1332
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 918
([(0,5),(1,5),(2,3),(5,4)],6) => 552
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => 555
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) => 629
([(1,5),(2,5),(3,4),(3,5)],6) => 912
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) => 763
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) => 406
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 901
([(0,5),(1,5),(2,3),(2,4)],6) => 400
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => 573
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) => 561
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 650
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => 560
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => 603
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => 704
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 493
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => 709
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 717
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 650
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 1231
([(1,5),(2,5),(3,4),(4,5)],6) => 1596
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => 1122
([(0,5),(1,5),(2,3),(3,4)],6) => 425
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 546
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => 801
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) => 581
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 700
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) => 640
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 1045
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 680
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 693
([(0,5),(1,5),(2,4),(3,4)],6) => 484
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => 509
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 970
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 692
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1167
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1782
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => 832
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 517
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1867
([(2,5),(3,4)],6) => 2304
([(2,5),(3,4),(3,5)],6) => 1188
([(1,5),(2,3),(2,5),(3,4)],6) => 636
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) => 561
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => 401
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => 427
([(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 816
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => 556
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => 378
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => 426
([(2,4),(2,5),(3,4),(3,5)],6) => 1368
([(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 786
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) => 650
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 804
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => 418
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => 427
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => 446
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => 473
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => 538
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => 529
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => 496
([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => 562
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 783
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6) => 396
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => 524
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 626
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 552
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6) => 471
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 737
([(1,5),(2,3),(2,5),(5,4)],6) => 780
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) => 629
([(1,5),(2,3),(2,4)],6) => 918
([(1,5),(2,3),(2,4),(2,5)],6) => 912
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) => 612
([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 510
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 435
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 611
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) => 640
([(0,5),(1,2),(1,3),(1,4)],6) => 760
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 1291
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => 1045
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => 709
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => 717
([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 662
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 774
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 1004
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) => 406
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6) => 472
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 704
([(1,3),(1,5),(4,2),(5,4)],6) => 936
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => 832
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 521
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => 515
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 500
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => 475
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => 481
([(1,5),(2,3),(2,4),(4,5)],6) => 774
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) => 581
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 822
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 519
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 1008
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 700
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => 418
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 433
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 523
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => 605
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => 605
([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 510
([(0,4),(1,3),(1,5),(5,2)],6) => 517
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => 963
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) => 619
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => 418
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 550
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => 504
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 579
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 496
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 704
([(1,4),(1,5),(2,3),(2,5)],6) => 600
([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 876
([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => 610
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6) => 523
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 1188
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => 737
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) => 502
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 586
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6) => 471
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => 421
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 533
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) => 499
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 660
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => 362
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => 470
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => 481
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => 333
([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => 433
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => 466
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => 373
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6) => 342
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => 490
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => 416
([(0,4),(0,5),(1,2),(1,3)],6) => 484
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 509
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 970
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => 513
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 416
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 692
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 1167
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 1782
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => 552
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => 418
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => 524
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => 388
([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => 562
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => 496
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => 528
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6) => 435
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 342
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => 421
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 502
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => 302
([(1,4),(2,3),(2,5),(4,5)],6) => 636
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => 500
([(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 786
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => 490
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 509
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => 290
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => 515
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => 362
([(0,5),(1,3),(1,4),(5,2)],6) => 425
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 641
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => 918
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) => 406
([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6) => 650
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => 470
([(2,5),(3,4),(4,5)],6) => 1512
([(1,5),(2,3),(3,5),(5,4)],6) => 930
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => 555
([(1,3),(2,4),(4,5)],6) => 900
([(1,5),(4,3),(5,2),(5,4)],6) => 930
([(1,5),(2,3),(3,4),(3,5)],6) => 780
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => 523
([(0,4),(1,5),(5,2),(5,3)],6) => 552
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => 1122
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) => 763
([(1,5),(3,4),(4,2),(5,3)],6) => 762
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => 546
([(1,4),(2,3),(3,5),(4,5)],6) => 852
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 593
([(0,5),(1,4),(4,2),(5,3)],6) => 400
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => 606
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => 378
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => 418
([(1,5),(2,3),(3,4),(4,5)],6) => 936
([(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 804
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 494
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 606
([(0,5),(1,4),(2,3)],6) => 729
([(0,5),(1,3),(2,4),(2,5)],6) => 390
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) => 410
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => 440
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 475
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 388
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => 528
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 868
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => 571
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) => 619
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => 275
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 396
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 626
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => 234
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6) => 417
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 646
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 951
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => 466
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 488
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 513
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) => 410
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 418
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 333
([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 610
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => 440
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => 538
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => 529
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => 556
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) => 612
([(0,5),(1,3),(4,2),(5,4)],6) => 520
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => 593
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => 500
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6) => 533
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => 586
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => 571
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 462
([(0,5),(1,3),(2,4),(4,5)],6) => 517
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) => 499
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 586
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => 963
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 641
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 496
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 521
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 519
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1053
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of endomorphisms of a poset.
References
[1] Prince, R. Whether a total order set of size $n$ has the fewest endomorphisms among posets of size $n$ MathOverflow:252899
Code
def statistic(P):
    return len(poset_endomorphisms(P))

def poset_endomorphisms(P):
    P = P.relabel()
    r = P.cardinality()
    S = cartesian_product([range(r)]*r)
    return [pi for pi in S if P.is_poset_morphism(lambda i: pi[i], P)]

(* Mathematica code using depth first recursion *)

endoCount::usage := "If rel is a reflexive relation on 1,2,..,Max[rel], then \
endoCount[rel] is the number of self maps f for which {f[a],f[b]} is in the \
relation whenever {a,b} is in the relation.”

endoCount[rel_] := morphismCount[rel, rel]

morphismCount[rel1_List, rel2_List] :=
Module[{max1 = Max[rel1], max2 = Max[rel2], down, checkdown, num, ans},
 Do[down[i] = Select[rel1, Max[#] == i &], {i, max1}];
 checkdown[f_List] := AllTrue[down[Length[f]], MemberQ[rel2, f[[#1]]] &];
 num[{}] := Sum[num[{i}], {i, max2}];
 num[f_List] :=
  If[checkdown[f],
   If[Length[f] == max1, 1, Sum[num[Append[f, i]], {i, max2}]], 0];
 ans = num[{}]; Clear[checkdown, down]; ans]

(* example *)

endoCount[{{1, 1}, {1, 2}, {1, 10}, {2, 2}, {3, 2}, {3, 3}, {3,
  4}, {4, 4}, {5, 4}, {5, 5}, {5, 6}, {6, 6}, {7, 6}, {7, 7}, {7,
  8}, {8, 8}, {9, 8}, {9, 9}, {9, 10}, {10, 10}}]

(* gives 10030 *)

(* Sanity checks are to be added. For instance we must have 
  Union @@ rel == Range[Max[rel]]
*)


Created
Oct 24, 2016 at 12:49 by Martin Rubey
Updated
Nov 13, 2022 at 11:36 by Martin Rubey