edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>1 [2]=>2 [1,1]=>0 [3]=>2 [2,1]=>2 [1,1,1]=>0 [4]=>4 [3,1]=>2 [2,2]=>3 [2,1,1]=>2 [1,1,1,1]=>0 [5]=>3 [4,1]=>8 [3,2]=>8 [3,1,1]=>6 [2,2,1]=>7 [2,1,1,1]=>2 [1,1,1,1,1]=>0 [6]=>8 [5,1]=>8 [4,2]=>32 [4,1,1]=>18 [3,3]=>4 [3,2,1]=>34 [3,1,1,1]=>20 [2,2,2]=>16 [2,2,1,1]=>14 [2,1,1,1,1]=>2 [1,1,1,1,1,1]=>0 [7]=>6 [6,1]=>30 [5,2]=>40 [5,1,1]=>60 [4,3]=>42 [4,2,1]=>184 [4,1,1,1]=>82 [3,3,1]=>80 [3,2,2]=>104 [3,2,1,1]=>246 [3,1,1,1,1]=>30 [2,2,2,1]=>84 [2,2,1,1,1]=>54 [2,1,1,1,1,1]=>2 [1,1,1,1,1,1,1]=>0 [8]=>22 [7,1]=>44 [6,2]=>238 [6,1,1]=>210 [5,3]=>66 [5,2,1]=>588 [5,1,1,1]=>622 [4,4]=>160 [4,3,1]=>766 [4,2,2]=>1134 [4,2,1,1]=>1588 [4,1,1,1,1]=>426 [3,3,2]=>342 [3,3,1,1]=>1398 [3,2,2,1]=>1756 [3,2,1,1,1]=>1740 [3,1,1,1,1,1]=>30 [2,2,2,2]=>374 [2,2,2,1,1]=>630 [2,2,1,1,1,1]=>210 [2,1,1,1,1,1,1]=>2 [1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of graphs with given frequency partition.
The frequency partition of a graph on $n$ vertices is the partition obtained from its degree sequence by recording and sorting the frequencies of the numbers that occur.
For example, the complete graph on $n$ vertices has frequency partition $(n)$. The path on $n$ vertices has frequency partition $(n-2,2)$, because its degree sequence is $(2,\dots,2,1,1)$. The star graph on $n$ vertices has frequency partition is $(n-1, 1)$, because its degree sequence is $(n-1,1,\dots,1)$.
There are two graphs having frequency partition $(2,1)$: the path and an edge together with an isolated vertex.
Code
def statistic(la):
    """The number of graphs with frequency partition la.

    The frequency partition of a graph on n vertices is the partition
    obtained by taking the frequencies of the degrees of its vertices.

    sage: statistic([2,1])
    2
    """
    c = 0
    la = Partition(la)
    for G in graphs(la.size()):
        s = G.degree_sequence()
        if Partition(sorted([s.count(i) for i in Set(s)], reverse=True)) == la:
            c += 1
    return c
Created
Nov 04, 2016 at 22:15 by Martin Rubey
Updated
Nov 04, 2016 at 22:15 by Martin Rubey