Identifier
-
Mp00146:
Dyck paths
—to tunnel matching⟶
Perfect matchings
Mp00116: Perfect matchings —Kasraoui-Zeng⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
St000647: Permutations ⟶ ℤ
Values
[1,0] => [(1,2)] => [(1,2)] => [2,1] => 0
[1,0,1,0] => [(1,2),(3,4)] => [(1,2),(3,4)] => [2,1,4,3] => 0
[1,1,0,0] => [(1,4),(2,3)] => [(1,3),(2,4)] => [3,4,1,2] => 1
[1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => 0
[1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => 1
[1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => 1
[1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => [(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => 2
[1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => [(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => 1
[1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7)] => [(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => 1
[1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => [(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => 1
[1,0,1,1,0,1,0,0] => [(1,2),(3,8),(4,5),(6,7)] => [(1,2),(3,5),(4,7),(6,8)] => [2,1,5,7,3,8,4,6] => 2
[1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => [(1,2),(3,6),(4,7),(5,8)] => [2,1,6,7,8,3,4,5] => 1
[1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => [(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => 1
[1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => [(1,3),(2,4),(5,7),(6,8)] => [3,4,1,2,7,8,5,6] => 2
[1,1,0,1,0,0,1,0] => [(1,6),(2,3),(4,5),(7,8)] => [(1,3),(2,5),(4,6),(7,8)] => [3,5,1,6,2,4,8,7] => 2
[1,1,0,1,0,1,0,0] => [(1,8),(2,3),(4,5),(6,7)] => [(1,3),(2,5),(4,7),(6,8)] => [3,5,1,7,2,8,4,6] => 3
[1,1,0,1,1,0,0,0] => [(1,8),(2,3),(4,7),(5,6)] => [(1,3),(2,6),(4,7),(5,8)] => [3,6,1,7,8,2,4,5] => 2
[1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => [(1,4),(2,5),(3,6),(7,8)] => [4,5,6,1,2,3,8,7] => 1
[1,1,1,0,0,1,0,0] => [(1,8),(2,5),(3,4),(6,7)] => [(1,4),(2,5),(3,7),(6,8)] => [4,5,7,1,2,8,3,6] => 2
[1,1,1,0,1,0,0,0] => [(1,8),(2,7),(3,4),(5,6)] => [(1,4),(2,6),(3,7),(5,8)] => [4,6,7,1,8,2,3,5] => 2
[1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => [(1,5),(2,6),(3,7),(4,8)] => [5,6,7,8,1,2,3,4] => 1
[1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 0
[1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => [(1,6),(2,7),(3,8),(4,9),(5,10)] => [6,7,8,9,10,1,2,3,4,5] => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] => [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)] => [7,8,9,10,11,12,1,2,3,4,5,6] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of big descents of a permutation.
For a permutation $\pi$, this is the number of indices $i$ such that $\pi(i)-\pi(i+1) > 1$.
The generating functions of big descents is equal to the generating function of (normal) descents after sending a permutation from cycle to one-line notation Mp00090cycle-as-one-line notation, see [Theorem 2.5, 1].
For the number of small descents, see St000214The number of adjacencies of a permutation..
For a permutation $\pi$, this is the number of indices $i$ such that $\pi(i)-\pi(i+1) > 1$.
The generating functions of big descents is equal to the generating function of (normal) descents after sending a permutation from cycle to one-line notation Mp00090cycle-as-one-line notation, see [Theorem 2.5, 1].
For the number of small descents, see St000214The number of adjacencies of a permutation..
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
Kasraoui-Zeng
Description
The Kasraoui-Zeng involution for perfect matchings.
This yields the perfect matching with the number of nestings and crossings exchanged.
This yields the perfect matching with the number of nestings and crossings exchanged.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!