Identifier
- St000664: Permutations ⟶ ℤ
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 1
[3,1,4,2] => 0
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 1
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 0
[1,4,5,3,2] => 0
[1,5,2,3,4] => 0
[1,5,2,4,3] => 0
[1,5,3,2,4] => 0
[1,5,3,4,2] => 0
[1,5,4,2,3] => 0
[1,5,4,3,2] => 0
[2,1,3,4,5] => 0
[2,1,3,5,4] => 0
[2,1,4,3,5] => 0
[2,1,4,5,3] => 0
[2,1,5,3,4] => 0
[2,1,5,4,3] => 0
[2,3,1,4,5] => 0
[2,3,1,5,4] => 0
[2,3,4,1,5] => 0
[2,3,4,5,1] => 0
[2,3,5,1,4] => 1
[2,3,5,4,1] => 1
[2,4,1,3,5] => 0
[2,4,1,5,3] => 0
[2,4,3,1,5] => 0
[2,4,3,5,1] => 0
[2,4,5,1,3] => 0
[2,4,5,3,1] => 0
[2,5,1,3,4] => 0
[2,5,1,4,3] => 0
[2,5,3,1,4] => 0
[2,5,3,4,1] => 0
[2,5,4,1,3] => 0
[2,5,4,3,1] => 0
[3,1,2,4,5] => 1
[3,1,2,5,4] => 1
[3,1,4,2,5] => 0
[3,1,4,5,2] => 0
[3,1,5,2,4] => 0
[3,1,5,4,2] => 0
[3,2,1,4,5] => 0
[3,2,1,5,4] => 0
[3,2,4,1,5] => 0
[3,2,4,5,1] => 0
[3,2,5,1,4] => 0
[3,2,5,4,1] => 0
[3,4,1,2,5] => 1
[3,4,1,5,2] => 0
[3,4,2,1,5] => 0
[3,4,2,5,1] => 0
[3,4,5,1,2] => 0
[3,4,5,2,1] => 0
[3,5,1,2,4] => 1
[3,5,1,4,2] => 0
>>> Load all 1201 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of right ropes of a permutation.
Let $\pi$ be a permutation of length $n$. A raft of $\pi$ is a non-empty maximal sequence of consecutive small ascents, St000441The number of successions of a permutation., and a right rope is a large ascent after a raft of $\pi$.
See Definition 3.10 and Example 3.11 in [1].
Let $\pi$ be a permutation of length $n$. A raft of $\pi$ is a non-empty maximal sequence of consecutive small ascents, St000441The number of successions of a permutation., and a right rope is a large ascent after a raft of $\pi$.
See Definition 3.10 and Example 3.11 in [1].
References
[1] Billey, S. C., Konvalinka, M., Petersen, T. K., Slofstra, W., Tenner, B. E. Parabolic double cosets in Coxeter groups arXiv:1612.00736
Code
def statistic(pi):
rafts = [[]]
for i in range(len(pi)-1):
if pi[i+1] == pi[i]+1:
rafts[-1].append(i)
else:
rafts.append([])
last_rafts = [ raft[-1] for raft in rafts if raft ]
return sum(1 for last_raft in last_rafts
if last_raft < len(pi)-2 and pi[last_raft+1] < pi[last_raft+2])
Created
Dec 05, 2016 at 12:31 by Christian Stump
Updated
Nov 03, 2017 at 00:24 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!