Identifier
Values
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 2
([(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 2
([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(2,3)],4) => ([(0,1)],2) => ([(0,1)],2) => 2
([(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(3,4)],5) => ([(0,1)],2) => ([(0,1)],2) => 2
([(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(1,4),(2,3)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(4,5)],6) => ([(0,1)],2) => ([(0,1)],2) => 2
([(3,5),(4,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(5,6)],7) => ([(0,1)],2) => ([(0,1)],2) => 2
([(4,6),(5,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(3,6),(4,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 3
([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
search for individual values
searching the database for the individual values of this statistic
Description
The Grundy value for Hackendot on posets.
Two players take turns and remove an order filter. The player who is faced with the one element poset looses. This game is a slight variation of Chomp.
This statistic is the Grundy value of the poset, that is, the smallest non-negative integer which does not occur as value of a poset obtained by a single move.
Two players take turns and remove an order filter. The player who is faced with the one element poset looses. This game is a slight variation of Chomp.
This statistic is the Grundy value of the poset, that is, the smallest non-negative integer which does not occur as value of a poset obtained by a single move.
Map
to poset
Description
Return the poset corresponding to the lattice.
Map
connected vertex partitions
Description
Sends a graph to the lattice of its connected vertex partitions.
A connected vertex partition of a graph $G = (V,E)$ is a set partition of $V$ such that each part induced a connected subgraph of $G$. The connected vertex partitions of $G$ form a lattice under refinement. If $G = K_n$ is a complete graph, the resulting lattice is the lattice of set partitions on $n$ elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
A connected vertex partition of a graph $G = (V,E)$ is a set partition of $V$ such that each part induced a connected subgraph of $G$. The connected vertex partitions of $G$ form a lattice under refinement. If $G = K_n$ is a complete graph, the resulting lattice is the lattice of set partitions on $n$ elements.
In the language of matroid theory, this map sends a graph to the lattice of flats of its graphic matroid. The resulting lattice is a geometric lattice, i.e. it is atomistic and semimodular.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!