Identifier
-
Mp00051:
Ordered trees
—to Dyck path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000684: Dyck paths ⟶ ℤ
Values
[] => [] => [1,0] => [1,0] => 1
[[]] => [1,0] => [1,1,0,0] => [1,1,0,0] => 1
[[],[]] => [1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 2
[[[]]] => [1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 1
[[],[],[]] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 3
[[],[[]]] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0] => 2
[[[]],[]] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[[[],[]]] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 2
[[[[]]]] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 1
[[],[],[],[]] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 4
[[],[],[[]]] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => 3
[[],[[]],[]] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 3
[[],[[],[]]] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => 3
[[],[[[]]]] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[[[]],[],[]] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 3
[[[]],[[]]] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[[[],[]],[]] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 2
[[[[]]],[]] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[[[],[],[]]] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 3
[[[],[[]]]] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => 2
[[[[]],[]]] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[[[[],[]]]] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 2
[[[[[]]]]] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 5
[[],[],[],[[]]] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => 3
[[],[],[[]],[]] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 4
[[],[],[[],[]]] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => 4
[[],[],[[[]]]] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => 3
[[],[[]],[],[]] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 4
[[],[[]],[[]]] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 3
[[],[[],[]],[]] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => 4
[[],[[[]]],[]] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 3
[[],[[],[],[]]] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 4
[[],[[],[[]]]] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => 3
[[],[[[]],[]]] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 2
[[],[[[],[]]]] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 3
[[],[[[[]]]]] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[[]],[],[],[]] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 4
[[[]],[],[[]]] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => 3
[[[]],[[]],[]] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 3
[[[]],[[],[]]] => [1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 3
[[[]],[[[]]]] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[[[],[]],[],[]] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 3
[[[[]]],[],[]] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[[[],[]],[[]]] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 3
[[[[]]],[[]]] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
[[[],[],[]],[]] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 3
[[[],[[]]],[]] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 2
[[[[]],[]],[]] => [1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[[[[],[]]],[]] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 2
[[[[[]]]],[]] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[[[],[],[],[]]] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 4
[[[],[],[[]]]] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[[[],[[]],[]]] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 3
[[[],[[],[]]]] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 3
[[[],[[[]]]]] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[[]],[],[]]] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 3
[[[[]],[[]]]] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 2
[[[[],[]],[]]] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 2
[[[[[]]],[]]] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[[[[],[],[]]]] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 3
[[[[],[[]]]]] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[[]],[]]]] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[[[[[],[]]]]] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
[[[[[[]]]]]] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 1
[[],[],[],[],[],[]] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => 6
[[],[],[],[],[[]]] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => 4
[[],[],[],[[]],[]] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => 4
[[],[],[],[[],[]]] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,1,0,0,0] => 4
[[],[],[],[[[]]]] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => 3
[[],[],[[]],[],[]] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,1,0,0] => 5
[[],[],[[]],[[]]] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => 4
[[],[],[[],[]],[]] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => 5
[[],[],[[[]]],[]] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,1,0,0] => 4
[[],[],[[],[],[]]] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => 5
[[],[],[[],[[]]]] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => 3
[[],[],[[[]],[]]] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,1,0,0,0] => 4
[[],[],[[[],[]]]] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,1,0,0,0,0] => 4
[[],[],[[[[]]]]] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => 3
[[],[[]],[],[],[]] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,1,0,0] => 5
[[],[[]],[],[[]]] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => 4
[[],[[]],[[]],[]] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,1,0,0] => 4
[[],[[]],[[],[]]] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,1,0,0,0] => 3
[[],[[]],[[[]]]] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => 3
[[],[[],[]],[],[]] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,1,0,0] => 5
[[],[[[]]],[],[]] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,1,0,0] => 4
[[],[[],[]],[[]]] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => 4
[[],[[[]]],[[]]] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => 2
[[],[[],[],[]],[]] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0] => 5
[[],[[],[[]]],[]] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,1,0,0] => 4
[[],[[[]],[]],[]] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,1,0,0] => 3
[[],[[[],[]]],[]] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,1,0,0] => 3
[[],[[[[]]]],[]] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,1,0,0] => 3
[[],[[],[],[],[]]] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0] => 5
[[],[[],[],[[]]]] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => 3
[[],[[],[[]],[]]] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,1,0,0,0] => 4
[[],[[],[[],[]]]] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,1,0,0,0,0] => 4
[[],[[],[[[]]]]] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => 3
[[],[[[]],[],[]]] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,1,0,0,0] => 3
[[],[[[]],[[]]]] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => 3
[[],[[[],[]],[]]] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,1,0,0,0] => 4
>>> Load all 261 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of the LNakayama algebra associated to a Dyck path.
An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with n points for n≥2. Number those points from the left to the right by 0,1,…,n−1.
The algebra is then uniquely determined by the dimension ci of the projective indecomposable modules at point i. Such algebras are then uniquely determined by lists of the form [c0,c1,...,cn−1] with the conditions: cn−1=1 and ci−1≤ci+1 for all i. The number of such algebras is then the n−1-st Catalan number Cn−1.
One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0].
Conjecture: that there is an explicit bijection between n-LNakayama algebras with global dimension bounded by m and Dyck paths with height at most m.
Examples:
An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with n points for n≥2. Number those points from the left to the right by 0,1,…,n−1.
The algebra is then uniquely determined by the dimension ci of the projective indecomposable modules at point i. Such algebras are then uniquely determined by lists of the form [c0,c1,...,cn−1] with the conditions: cn−1=1 and ci−1≤ci+1 for all i. The number of such algebras is then the n−1-st Catalan number Cn−1.
One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0].
Conjecture: that there is an explicit bijection between n-LNakayama algebras with global dimension bounded by m and Dyck paths with height at most m.
Examples:
- For m=2, the number of Dyck paths with global dimension at most m starts for n≥2 with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.
- For m=3, the number of Dyck paths with global dimension at most m starts for n≥2 with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Map
switch returns and last double rise
Description
An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path to the depth of the tree.
This sends the maximal height of the Dyck path to the depth of the tree.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!