Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000688: Dyck paths ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,0,0] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => 1
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 2
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 1
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 1
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 3
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 3
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => 2
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,1,0,0,0] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,1,0,0,0,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0] => 3
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,1,1,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,1,1,1,0,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,1,0,1,0,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0,1,0] => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,1,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0,1,0] => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0,1,0] => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => 1
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0] => 3
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path.
The global dimension is given by St000684The global dimension of the LNakayama algebra associated to a Dyck path. and the dominant dimension is given by St000685The dominant dimension of the LNakayama algebra associated to a Dyck path.. To every Dyck path there is an LNakayama algebra associated as described in St000684The global dimension of the LNakayama algebra associated to a Dyck path..
Dyck paths for which the global dimension and the dominant dimension of the the LNakayama algebra coincide and both dimensions at least $2$ correspond to the LNakayama algebras that are higher Auslander algebras in the sense of [1].
The global dimension is given by St000684The global dimension of the LNakayama algebra associated to a Dyck path. and the dominant dimension is given by St000685The dominant dimension of the LNakayama algebra associated to a Dyck path.. To every Dyck path there is an LNakayama algebra associated as described in St000684The global dimension of the LNakayama algebra associated to a Dyck path..
Dyck paths for which the global dimension and the dominant dimension of the the LNakayama algebra coincide and both dimensions at least $2$ correspond to the LNakayama algebras that are higher Auslander algebras in the sense of [1].
Map
Delest-Viennot
Description
Return the Dyck path corresponding to the parallelogram polyomino obtained by applying Delest-Viennot's bijection.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!