Identifier
            
            - St000689: Dyck paths ⟶ ℤ
 
                Values
            
            
                        =>
                        
                    
                            Cc0005;cc-rep
                            
                            
                            
                    
                        [1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>2
[1,0,1,1,0,0]=>0
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>3
[1,0,1,0,1,1,0,0]=>0
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,0]=>0
[1,1,0,0,1,0,1,0]=>0
[1,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>0
[1,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,1,0,0]=>0
[1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,0]=>0
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>0
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>0
[1,0,1,1,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,0,1,0,0]=>0
[1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,0,1,0,1,0,1,0]=>0
[1,1,0,0,1,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>0
[1,1,0,1,1,0,0,0,1,0]=>0
[1,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0]=>0
[1,1,1,0,0,0,1,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,0,1,0]=>0
[1,1,1,0,0,1,0,1,0,0]=>0
[1,1,1,0,0,1,1,0,0,0]=>0
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0]=>0
[1,1,1,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,0]=>0
[1,1,1,1,0,0,1,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
                    
                    
                    
                
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                    /
                    
                        
			search for generating function
                        
                            searching the database for statistics with the same generating function
                        
                    
                    
                Description
            The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid.
The correspondence between LNakayama algebras and Dyck paths is explained in St000684The global dimension of the LNakayama algebra associated to a Dyck path.. A module $M$ is $n$-rigid, if $\operatorname{Ext}^i(M,M)=0$ for $1\leq i\leq n$.
This statistic gives the maximal $n$ such that the minimal generator-cogenerator module $A \oplus D(A)$ of the LNakayama algebra $A$ corresponding to a Dyck path is $n$-rigid.
An application is to check for maximal $n$-orthogonal objects in the module category in the sense of [2].
	The correspondence between LNakayama algebras and Dyck paths is explained in St000684The global dimension of the LNakayama algebra associated to a Dyck path.. A module $M$ is $n$-rigid, if $\operatorname{Ext}^i(M,M)=0$ for $1\leq i\leq n$.
This statistic gives the maximal $n$ such that the minimal generator-cogenerator module $A \oplus D(A)$ of the LNakayama algebra $A$ corresponding to a Dyck path is $n$-rigid.
An application is to check for maximal $n$-orthogonal objects in the module category in the sense of [2].
References
            [1] Marczinzik, R. Upper bounds for the dominant dimension of Nakayama and related algebras arXiv:1605.09634
[2] Iyama, O. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories MathSciNet:2298819 arXiv:math/0407052
	[2] Iyama, O. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories MathSciNet:2298819 arXiv:math/0407052
Code
            
DeclareOperation("domdimend", [IsList]);
InstallMethod(domdimend, "for a representation of a quiver", [IsList],0,function(L)
local list, n, temp1, Liste_d, j, i, k, r, kk;
list:=L;
A:=NakayamaAlgebra(GF(3),list);
R:=[0..20];
projA:=IndecProjectiveModules(A);RegA:=DirectSumOfQPAModules(projA);injA:=IndecInjectiveModules(A);CoRegA:=DirectSumOfQPAModules(injA);N:=DirectSumOfQPAModules([RegA,CoRegA]);M:=BasicVersionOfModule(N);
W:=Filtered(R,x->N_RigidModule(M,x)=true);
n:=Maximum(W);
return(n);
end
);
Created
            Jan 18, 2017 at 00:26 by Rene Marczinzik
	Updated
            Jan 18, 2017 at 16:34 by Martin Rubey
	searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!