Identifier
-
Mp00148:
Finite Cartan types
—to root poset⟶
Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000689: Dyck paths ⟶ ℤ
Values
['A',1] => ([],1) => [1] => [1,0] => 0
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [1,0,1,1,0,0] => 0
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [1,0,1,0,1,1,0,0] => 0
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [1,0,1,1,1,0,0,1,0,0] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid.
The correspondence between LNakayama algebras and Dyck paths is explained in St000684The global dimension of the LNakayama algebra associated to a Dyck path.. A module M is n-rigid, if Exti(M,M)=0 for 1≤i≤n.
This statistic gives the maximal n such that the minimal generator-cogenerator module A⊕D(A) of the LNakayama algebra A corresponding to a Dyck path is n-rigid.
An application is to check for maximal n-orthogonal objects in the module category in the sense of [2].
The correspondence between LNakayama algebras and Dyck paths is explained in St000684The global dimension of the LNakayama algebra associated to a Dyck path.. A module M is n-rigid, if Exti(M,M)=0 for 1≤i≤n.
This statistic gives the maximal n such that the minimal generator-cogenerator module A⊕D(A) of the LNakayama algebra A corresponding to a Dyck path is n-rigid.
An application is to check for maximal n-orthogonal objects in the module category in the sense of [2].
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where α≺β if β−α is a simple root.
This is the poset on the set of positive roots of its root system where α≺β if β−α is a simple root.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!