Identifier
- St000697: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>0
[2]=>0
[1,1]=>0
[3]=>1
[2,1]=>1
[1,1,1]=>1
[4]=>1
[3,1]=>0
[2,2]=>1
[2,1,1]=>0
[1,1,1,1]=>1
[5]=>1
[4,1]=>1
[3,2]=>1
[3,1,1]=>0
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>1
[6]=>2
[5,1]=>2
[4,2]=>0
[4,1,1]=>2
[3,3]=>2
[3,2,1]=>2
[3,1,1,1]=>2
[2,2,2]=>2
[2,2,1,1]=>0
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>2
[7]=>2
[6,1]=>1
[5,2]=>2
[5,1,1]=>1
[4,3]=>2
[4,2,1]=>2
[4,1,1,1]=>2
[3,3,1]=>1
[3,2,2]=>1
[3,2,1,1]=>2
[3,1,1,1,1]=>1
[2,2,2,1]=>2
[2,2,1,1,1]=>2
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>2
[8]=>2
[7,1]=>2
[6,2]=>2
[6,1,1]=>1
[5,3]=>2
[5,2,1]=>2
[5,1,1,1]=>2
[4,4]=>2
[4,3,1]=>2
[4,2,2]=>2
[4,2,1,1]=>0
[4,1,1,1,1]=>2
[3,3,2]=>1
[3,3,1,1]=>2
[3,2,2,1]=>2
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>1
[2,2,2,2]=>2
[2,2,2,1,1]=>2
[2,2,1,1,1,1]=>2
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>2
[9]=>3
[8,1]=>3
[7,2]=>1
[7,1,1]=>3
[6,3]=>3
[6,2,1]=>3
[6,1,1,1]=>3
[5,4]=>3
[5,3,1]=>0
[5,2,2]=>3
[5,2,1,1]=>1
[5,1,1,1,1]=>3
[4,4,1]=>3
[4,3,2]=>3
[4,3,1,1]=>1
[4,2,2,1]=>1
[4,2,1,1,1]=>1
[4,1,1,1,1,1]=>3
[3,3,3]=>3
[3,3,2,1]=>3
[3,3,1,1,1]=>3
[3,2,2,2]=>3
[3,2,2,1,1]=>0
[3,2,1,1,1,1]=>3
[3,1,1,1,1,1,1]=>3
[2,2,2,2,1]=>3
[2,2,2,1,1,1]=>3
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1]=>3
[10]=>3
[9,1]=>2
[8,2]=>3
[8,1,1]=>2
[7,3]=>3
[7,2,1]=>3
[7,1,1,1]=>3
[6,4]=>2
[6,3,1]=>2
[6,2,2]=>2
[6,2,1,1]=>3
[6,1,1,1,1]=>2
[5,5]=>3
[5,4,1]=>2
[5,3,2]=>2
[5,3,1,1]=>0
[5,2,2,1]=>3
[5,2,1,1,1]=>3
[5,1,1,1,1,1]=>2
[4,4,2]=>2
[4,4,1,1]=>3
[4,3,3]=>3
[4,3,2,1]=>3
[4,3,1,1,1]=>3
[4,2,2,2]=>3
[4,2,2,1,1]=>0
[4,2,1,1,1,1]=>3
[4,1,1,1,1,1,1]=>3
[3,3,3,1]=>3
[3,3,2,2]=>2
[3,3,2,1,1]=>2
[3,3,1,1,1,1]=>2
[3,2,2,2,1]=>2
[3,2,2,1,1,1]=>2
[3,2,1,1,1,1,1]=>3
[3,1,1,1,1,1,1,1]=>2
[2,2,2,2,2]=>3
[2,2,2,2,1,1]=>2
[2,2,2,1,1,1,1]=>3
[2,2,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>3
[11]=>3
[10,1]=>3
[9,2]=>3
[9,1,1]=>2
[8,3]=>3
[8,2,1]=>3
[8,1,1,1]=>3
[7,4]=>3
[7,3,1]=>3
[7,2,2]=>3
[7,2,1,1]=>1
[7,1,1,1,1]=>3
[6,5]=>3
[6,4,1]=>2
[6,3,2]=>2
[6,3,1,1]=>3
[6,2,2,1]=>3
[6,2,1,1,1]=>3
[6,1,1,1,1,1]=>2
[5,5,1]=>3
[5,4,2]=>2
[5,4,1,1]=>3
[5,3,3]=>3
[5,3,2,1]=>3
[5,3,1,1,1]=>3
[5,2,2,2]=>3
[5,2,2,1,1]=>3
[5,2,1,1,1,1]=>3
[5,1,1,1,1,1,1]=>3
[4,4,3]=>3
[4,4,2,1]=>3
[4,4,1,1,1]=>3
[4,3,3,1]=>1
[4,3,2,2]=>3
[4,3,2,1,1]=>3
[4,3,1,1,1,1]=>3
[4,2,2,2,1]=>3
[4,2,2,1,1,1]=>3
[4,2,1,1,1,1,1]=>1
[4,1,1,1,1,1,1,1]=>3
[3,3,3,2]=>3
[3,3,3,1,1]=>3
[3,3,2,2,1]=>2
[3,3,2,1,1,1]=>2
[3,3,1,1,1,1,1]=>3
[3,2,2,2,2]=>3
[3,2,2,2,1,1]=>2
[3,2,2,1,1,1,1]=>3
[3,2,1,1,1,1,1,1]=>3
[3,1,1,1,1,1,1,1,1]=>2
[2,2,2,2,2,1]=>3
[2,2,2,2,1,1,1]=>3
[2,2,2,1,1,1,1,1]=>3
[2,2,1,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1,1,1]=>3
[12]=>4
[11,1]=>4
[10,2]=>2
[10,1,1]=>4
[9,3]=>4
[9,2,1]=>4
[9,1,1,1]=>4
[8,4]=>4
[8,3,1]=>1
[8,2,2]=>4
[8,2,1,1]=>2
[8,1,1,1,1]=>4
[7,5]=>2
[7,4,1]=>4
[7,3,2]=>4
[7,3,1,1]=>2
[7,2,2,1]=>2
[7,2,1,1,1]=>2
[7,1,1,1,1,1]=>4
[6,6]=>4
[6,5,1]=>4
[6,4,2]=>0
[6,4,1,1]=>4
[6,3,3]=>4
[6,3,2,1]=>4
[6,3,1,1,1]=>4
[6,2,2,2]=>4
[6,2,2,1,1]=>1
[6,2,1,1,1,1]=>4
[6,1,1,1,1,1,1]=>4
[5,5,2]=>4
[5,5,1,1]=>2
[5,4,3]=>4
[5,4,2,1]=>4
[5,4,1,1,1]=>4
[5,3,3,1]=>2
[5,3,2,2]=>1
[5,3,2,1,1]=>4
[5,3,1,1,1,1]=>1
[5,2,2,2,1]=>4
[5,2,2,1,1,1]=>4
[5,2,1,1,1,1,1]=>2
[5,1,1,1,1,1,1,1]=>4
[4,4,4]=>4
[4,4,3,1]=>2
[4,4,2,2]=>4
[4,4,2,1,1]=>1
[4,4,1,1,1,1]=>4
[4,3,3,2]=>2
[4,3,3,1,1]=>2
[4,3,2,2,1]=>4
[4,3,2,1,1,1]=>4
[4,3,1,1,1,1,1]=>2
[4,2,2,2,2]=>2
[4,2,2,2,1,1]=>4
[4,2,2,1,1,1,1]=>2
[4,2,1,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1,1]=>4
[3,3,3,3]=>4
[3,3,3,2,1]=>4
[3,3,3,1,1,1]=>4
[3,3,2,2,2]=>4
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>4
[3,3,1,1,1,1,1,1]=>4
[3,2,2,2,2,1]=>4
[3,2,2,2,1,1,1]=>4
[3,2,2,1,1,1,1,1]=>1
[3,2,1,1,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1,1,1]=>4
[2,2,2,2,2,2]=>4
[2,2,2,2,2,1,1]=>2
[2,2,2,2,1,1,1,1]=>4
[2,2,2,1,1,1,1,1,1]=>4
[2,2,1,1,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1,1,1]=>4
[1,1,1,1,1,1,1,1,1,1,1,1]=>4
[5,4,3,1]=>4
[5,4,2,2]=>3
[5,4,2,1,1]=>3
[5,3,3,2]=>1
[5,3,3,1,1]=>4
[5,3,2,2,1]=>3
[4,4,3,2]=>4
[4,4,3,1,1]=>1
[4,4,2,2,1]=>3
[4,3,3,2,1]=>4
[5,4,3,2]=>4
[5,4,3,1,1]=>4
[5,4,2,2,1]=>3
[5,3,3,2,1]=>4
[4,4,3,2,1]=>4
[5,4,3,2,1]=>5
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $3$-rim hooks that are removed in this process to obtain a $3$-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $3$-rim hooks that are removed in this process to obtain a $3$-core.
Code
def statistic(L): k = 3 return (sum(L)-sum(L.core(k)))/k
Created
Feb 20, 2017 at 10:33 by Christian Stump
Updated
Jan 11, 2018 at 13:06 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!