Identifier
Values
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,5,2,6,4] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,5,6,2,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,6,2,4,5] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,6,2,5,4] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,1,6,5,2,4] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,2,5,1,6,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,4,1,6,2,5] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,5,1,2,6,4] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,5,1,6,4,2] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,5,2,1,6,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,5,2,6,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,5,2,6,4,1] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[3,6,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,1,2,6,3,5] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,1,3,5,2,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,1,5,2,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,1,6,2,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,1,6,3,2,5] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,1,6,3,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,2,1,6,3,5] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,2,5,1,6,3] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,2,6,1,3,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,2,6,3,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,2,6,3,5,1] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[4,3,1,6,2,5] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[5,1,3,4,2,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[5,1,4,2,3,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[5,2,4,1,6,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[5,3,1,6,2,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[6,1,3,4,2,5] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[6,1,4,2,3,5] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[6,2,4,1,5,3] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
[6,3,1,5,2,4] => ([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 12
search for individual values
searching the database for the individual values of this statistic
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$.
The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero.
This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!