edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>1 [1,1]=>1 [3]=>1 [2,1]=>2 [1,1,1]=>1 [4]=>1 [3,1]=>3 [2,2]=>1 [2,1,1]=>3 [1,1,1,1]=>1 [5]=>1 [4,1]=>4 [3,2]=>2 [3,1,1]=>6 [2,2,1]=>3 [2,1,1,1]=>4 [1,1,1,1,1]=>1 [6]=>1 [5,1]=>5 [4,2]=>3 [4,1,1]=>10 [3,3]=>1 [3,2,1]=>8 [3,1,1,1]=>10 [2,2,2]=>1 [2,2,1,1]=>6 [2,1,1,1,1]=>5 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>6 [5,2]=>4 [5,1,1]=>15 [4,3]=>2 [4,2,1]=>15 [4,1,1,1]=>20 [3,3,1]=>6 [3,2,2]=>3 [3,2,1,1]=>20 [3,1,1,1,1]=>15 [2,2,2,1]=>4 [2,2,1,1,1]=>10 [2,1,1,1,1,1]=>6 [1,1,1,1,1,1,1]=>1 [8]=>1 [7,1]=>7 [6,2]=>5 [6,1,1]=>21 [5,3]=>3 [5,2,1]=>24 [5,1,1,1]=>35 [4,4]=>1 [4,3,1]=>15 [4,2,2]=>6 [4,2,1,1]=>45 [4,1,1,1,1]=>35 [3,3,2]=>3 [3,3,1,1]=>20 [3,2,2,1]=>15 [3,2,1,1,1]=>40 [3,1,1,1,1,1]=>21 [2,2,2,2]=>1 [2,2,2,1,1]=>10 [2,2,1,1,1,1]=>15 [2,1,1,1,1,1,1]=>7 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>8 [7,2]=>6 [7,1,1]=>28 [6,3]=>4 [6,2,1]=>35 [6,1,1,1]=>56 [5,4]=>2 [5,3,1]=>27 [5,2,2]=>10 [5,2,1,1]=>84 [5,1,1,1,1]=>70 [4,4,1]=>10 [4,3,2]=>8 [4,3,1,1]=>60 [4,2,2,1]=>36 [4,2,1,1,1]=>105 [4,1,1,1,1,1]=>56 [3,3,3]=>1 [3,3,2,1]=>20 [3,3,1,1,1]=>50 [3,2,2,2]=>4 [3,2,2,1,1]=>45 [3,2,1,1,1,1]=>70 [3,1,1,1,1,1,1]=>28 [2,2,2,2,1]=>5 [2,2,2,1,1,1]=>20 [2,2,1,1,1,1,1]=>21 [2,1,1,1,1,1,1,1]=>8 [1,1,1,1,1,1,1,1,1]=>1 [10]=>1 [9,1]=>9 [8,2]=>7 [8,1,1]=>36 [7,3]=>5 [7,2,1]=>48 [7,1,1,1]=>84 [6,4]=>3 [6,3,1]=>42 [6,2,2]=>15 [6,2,1,1]=>140 [6,1,1,1,1]=>126 [5,5]=>1 [5,4,1]=>24 [5,3,2]=>15 [5,3,1,1]=>126 [5,2,2,1]=>70 [5,2,1,1,1]=>224 [5,1,1,1,1,1]=>126 [4,4,2]=>6 [4,4,1,1]=>50 [4,3,3]=>3 [4,3,2,1]=>64 [4,3,1,1,1]=>175 [4,2,2,2]=>10 [4,2,2,1,1]=>126 [4,2,1,1,1,1]=>210 [4,1,1,1,1,1,1]=>84 [3,3,3,1]=>10 [3,3,2,2]=>6 [3,3,2,1,1]=>75 [3,3,1,1,1,1]=>105 [3,2,2,2,1]=>24 [3,2,2,1,1,1]=>105 [3,2,1,1,1,1,1]=>112 [3,1,1,1,1,1,1,1]=>36 [2,2,2,2,2]=>1 [2,2,2,2,1,1]=>15 [2,2,2,1,1,1,1]=>35 [2,2,1,1,1,1,1,1]=>28 [2,1,1,1,1,1,1,1,1]=>9 [1,1,1,1,1,1,1,1,1,1]=>1 [11]=>1 [10,1]=>10 [9,2]=>8 [9,1,1]=>45 [8,3]=>6 [8,2,1]=>63 [8,1,1,1]=>120 [7,4]=>4 [7,3,1]=>60 [7,2,2]=>21 [7,2,1,1]=>216 [7,1,1,1,1]=>210 [6,5]=>2 [6,4,1]=>42 [6,3,2]=>24 [6,3,1,1]=>224 [6,2,2,1]=>120 [6,2,1,1,1]=>420 [6,1,1,1,1,1]=>252 [5,5,1]=>15 [5,4,2]=>15 [5,4,1,1]=>140 [5,3,3]=>6 [5,3,2,1]=>140 [5,3,1,1,1]=>420 [5,2,2,2]=>20 [5,2,2,1,1]=>280 [5,2,1,1,1,1]=>504 [5,1,1,1,1,1,1]=>210 [4,4,3]=>3 [4,4,2,1]=>60 [4,4,1,1,1]=>175 [4,3,3,1]=>36 [4,3,2,2]=>20 [4,3,2,1,1]=>280 [4,3,1,1,1,1]=>420 [4,2,2,2,1]=>70 [4,2,2,1,1,1]=>336 [4,2,1,1,1,1,1]=>378 [4,1,1,1,1,1,1,1]=>120 [3,3,3,2]=>4 [3,3,3,1,1]=>50 [3,3,2,2,1]=>45 [3,3,2,1,1,1]=>210 [3,3,1,1,1,1,1]=>196 [3,2,2,2,2]=>5 [3,2,2,2,1,1]=>84 [3,2,2,1,1,1,1]=>210 [3,2,1,1,1,1,1,1]=>168 [3,1,1,1,1,1,1,1,1]=>45 [2,2,2,2,2,1]=>6 [2,2,2,2,1,1,1]=>35 [2,2,2,1,1,1,1,1]=>56 [2,2,1,1,1,1,1,1,1]=>36 [2,1,1,1,1,1,1,1,1,1]=>10 [1,1,1,1,1,1,1,1,1,1,1]=>1 [12]=>1 [11,1]=>11 [10,2]=>9 [10,1,1]=>55 [9,3]=>7 [9,2,1]=>80 [9,1,1,1]=>165 [8,4]=>5 [8,3,1]=>81 [8,2,2]=>28 [8,2,1,1]=>315 [8,1,1,1,1]=>330 [7,5]=>3 [7,4,1]=>64 [7,3,2]=>35 [7,3,1,1]=>360 [7,2,2,1]=>189 [7,2,1,1,1]=>720 [7,1,1,1,1,1]=>462 [6,6]=>1 [6,5,1]=>35 [6,4,2]=>27 [6,4,1,1]=>280 [6,3,3]=>10 [6,3,2,1]=>256 [6,3,1,1,1]=>840 [6,2,2,2]=>35 [6,2,2,1,1]=>540 [6,2,1,1,1,1]=>1050 [6,1,1,1,1,1,1]=>462 [5,5,2]=>10 [5,5,1,1]=>105 [5,4,3]=>8 [5,4,2,1]=>175 [5,4,1,1,1]=>560 [5,3,3,1]=>84 [5,3,2,2]=>45 [5,3,2,1,1]=>700 [5,3,1,1,1,1]=>1134 [5,2,2,2,1]=>160 [5,2,2,1,1,1]=>840 [5,2,1,1,1,1,1]=>1008 [5,1,1,1,1,1,1,1]=>330 [4,4,4]=>1 [4,4,3,1]=>45 [4,4,2,2]=>20 [4,4,2,1,1]=>315 [4,4,1,1,1,1]=>490 [4,3,3,2]=>15 [4,3,3,1,1]=>210 [4,3,2,2,1]=>175 [4,3,2,1,1,1]=>896 [4,3,1,1,1,1,1]=>882 [4,2,2,2,2]=>15 [4,2,2,2,1,1]=>280 [4,2,2,1,1,1,1]=>756 [4,2,1,1,1,1,1,1]=>630 [4,1,1,1,1,1,1,1,1]=>165 [3,3,3,3]=>1 [3,3,3,2,1]=>40 [3,3,3,1,1,1]=>175 [3,3,2,2,2]=>10 [3,3,2,2,1,1]=>189 [3,3,2,1,1,1,1]=>490 [3,3,1,1,1,1,1,1]=>336 [3,2,2,2,2,1]=>35 [3,2,2,2,1,1,1]=>224 [3,2,2,1,1,1,1,1]=>378 [3,2,1,1,1,1,1,1,1]=>240 [3,1,1,1,1,1,1,1,1,1]=>55 [2,2,2,2,2,2]=>1 [2,2,2,2,2,1,1]=>21 [2,2,2,2,1,1,1,1]=>70 [2,2,2,1,1,1,1,1,1]=>84 [2,2,1,1,1,1,1,1,1,1]=>45 [2,1,1,1,1,1,1,1,1,1,1]=>11 [1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
References
[1] Fulton, W., Harris, J. Representation theory MathSciNet:1153249
Code
def statistic(L):
    return SemistandardTableaux(shape=L,max_entry=len(L)).cardinality()

def statistic_alt1(L):
    return prod( QQ(len(L)+j-i)/L.hook_length(i,j) for i,j in L.cells() )

def statistic_alt2(L):
    return SymmetricFunctions(QQ).schur()(L).expand(len(L))([1]*len(L))
Created
Mar 07, 2017 at 09:15 by Christian Stump
Updated
Mar 07, 2017 at 09:15 by Christian Stump